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Abstract

We give the detailed proofs of some of Kontsevich’s claims in the paper “Deformation Quantiza-
tion of Poisson Manifolds I”, i.e., we prove the compatibility of the two cup products, and prove two
conjectures by using the formalism of the proof of Kontsevich’s proof of his Formality theorem; the
conjecture of Räıs, Kashiwara and Vergne and the conjecture of Bar-Natan, Garoufalidis, Rozansky
and Thurston. Moreover, we calculate how the signatures appear. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Our purpose in this paper is to understand some of Kontsevich’s claims in his excellent
paper [10]. More precisely, we give the detailed proofs of the following:

1. The compatibility of the two cup products.
2. The conjecture of Raı̈s, Kashiwara and Vergne which we call the RKV conjecture.
3. The conjecture of Bar-Natan, Garoufalidis, Rozansky, and Thurston which we call the

BGRT conjecture.

1.1. Formality theorem

In his celebrated paper [10], Kontsevich proved his Formality theorem which we explain
first. From a manifoldX, we obtain the differential graded Lie algebrasTpoly(X) and
Dpoly(X) as follows:

Tpoly(X)
i := Γ (X,Λi+1TX), Dpoly(X)

i := i+1⊗
C∞(X)

Diff (X).
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There is the natural quasi-isomorphism of complexesTpoly(X)→ Dpoly(X) by the follow-
ing correspondence: for anyξi ∈ Γ (X,TX)(i = 0, . . . , n)

U (0)1 : Tpoly(X)
n � ξ0 ∧ · · · ∧ ξn


→

f0⊗ · · · ⊗ fn 
→

∑
σ∈Σn+1

∏
sign(σ )ξσi (fi)


 ∈ Dpoly(X)

n.

But it is not a morphism of differential graded Lie algebras.

Theorem 1.1 (Kontsevich).There is theL∞ quasi-isomorphism

U : C(Tpoly(X))→ C(Dpoly(X)),

such thatU1 : Tpoly(X)[1] → Dpoly(X)[1] coincides withU (0)1 .

Let α ∈ Tpoly(R
d) be a solution of the Maurer–Cartan equation forTpoly(R

d)

dα + 1
2[α, α] = 0.

We put α̃ = ∑
n≥1(t

n/n!)Un(

n︷ ︸︸ ︷
α ∧ · · · ∧ α) which is a solution of the Maurer–Cartan

equation forDpoly(R
d). Theα and α̃ give the formal deformation of differential graded

Lie algebraTpoly(R
d)α[[ t ]] and Dpoly(R

d)α̃[[ t ]]. The two complexTpoly(R
d)α[−1] and

Dpoly(R
d)α̃[−1] have the natural cup product. Kontsevich gave the outline of the proof of

the compatibility of two cup products in the cohomology level. Our first purpose is to make
it more detail.

1.2. Some applications

Formality theorem and the compatibility of the cup products are expected to have many
applications in various domains of mathematics.

As one of them, Kontsevich constructed the algebra homomorphism

Center(U(g))→ (Symg)g,

and showed that it coincides with the Duflo–Kirillov isomorphism, whereg is a finite
dimensional Lie algebra andU(g) is the enveloping algebra. Moreover, he suggested that
two conjectures about the Duflo–Kirillov type morphism, the RKV conjecture and the BGRT
conjecture, can be resolved by his idea.

1.2.1. The RKV conjecture
Following the paper [9], we explain the RKV conjecture. LetG be a finite dimensional

Lie group andg be the finite dimensional Lie algebra associated to theG. We put as follows:

Z(g) = Center(U(g)) = {bi-invariant differential operators},

I (g) = Sym(g)g =
{

differential operator with constant coefficients,

invariant under the adjoint action.

}
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There is the Duflo–Kirillov isomorphismΦ : Z(g)→ I (g)of algebras. Wheng is semisim-
ple, it is the Harish–Chandra isomorphism.

There is the PBW isomorphism Sym(g)→ U(g), and its restriction to Sym(g)g, which
we also call PBW isomorphism.

The composition of the PBW homomorphism and the Duflo–Kirillov morphism can be
regarded as follows:

Sym(g)g � V 
→ V ◦ j (x)1/2|x=0 ∈ Sym(g)g,

wherej (x) = det((1− e−a dx)/a dx; g) : g→ R. Under the Fourier transformation, it can
also be regarded as follows: for any polynomialf ong∗

f 
→ j

(
d

dx

)1/2

f.

We can also regardU(g) and Sym(g)g as the set of distributions with supports contained in
{0} and{e}, respectively.

Since the functionj (x) is analytic on a neighborhood, the above mapΦ can be naturally
extended on the distributions on any open set of theG. Take an open setU � e of G and
the open setU ′ � 0 of g such that exp :U ′ → U is diffeomorphic. We have the natural
isomorphism of the set of distributions onU andU ′,

exp∗ : D′(U ′; g) ∼→D′(U,G).
The extended Duflo–Kirillov morphismΦ : D′(U ;G) → D′(U ′; g) is given by the fol-
lowing correspondence:

u 
→ j (x)1/2 · (exp∗)
−1u.

Hence, we obtain the natural mapD′e(G)→ D′0(g), whereD′e(G) (resp.D′0(g)) means the
set of germs of distributions ate (resp. 0).

LetK be a cone ing � TeG � T0g. For any elementu of theD′e(G) (resp. theD′0(g)),
the germ of support ofu is defined, which induces the coneCe(suppu) (resp.C0(suppu))
in the tangent spaceTeG = T0g = g. We put

D′e(K,G) = {u ∈ D′e(G)|Ce(suppu) ⊂ K},
D′0(K, g) = {u ∈ D′0(g)|C0(suppu) ⊂ K}.

We have the natural morphismΦ : D′e(K;G)→ D′0(K; g). There are the adjointG-actions
Ad of G on theG andg. If a subsetK is an invariant under the adjoint action, then there are
theG-actions on theD′e(K,G) and theD′0(K, g). We putχ0(g) = |det(Ad(g); g)|. Then
we put as follows:

I ′e(K,G) = {u ∈ D′e(K,G)|u(ghg−1) = χ0(g)
−1u(h)},

I ′0(K, g) = {u ∈ D′0(K, g)|u(Ad(g)x) = χ0(g)
−1u(x)}.

There is the natural morphismΦ : I ′e(K;G)→ I ′0(K, g).
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For any invariant conesK1,K2 in g such thatK1∩(−K2) = {0}, the convolution product

∗G : I ′e(K1,G)× I ′e(K2,G)→ I ′e(K1+K2;G),

∗g : I ′0(K1, g)× I ′0(K2, g)→ I ′0(K1+K2; g)

can be defined.
The problem is the following.

Problem 1.1. Does the morphismΦ preserve the product structure? In other words, does
the following identity hold?

Φ(u ∗G v) = Φ(u) ∗g Φ(v).

The affirmative answer is of importance for the harmonic analysis. In particular, the local
solvability of bi-invariant differential operators follows (see the papers [9,12]). In the pa-
per [9], Kashiwara and Vergne proposed the conjecture with respect to Campbell–Hausdorff
formula, and give the affirmative answer under the assumption that the conjecture is
true.

Kontsevich suggests that the problem is solvable affirmatively based on his theory (see
[10, Section 8]). Our second purpose is to give the precise proof of this claim, i.e., we prove
the following theorem.

Theorem 1.2. Φ preserves the product structure.

1.2.2. BGRT conjecture
We explain the conjecture of BGRT (see [4] for the terminology). They give the special

element

Ω = expmB

( ∞∑
n=1

b2nω2n

)
,

which we call Duflo–Kirillov element (see the paper [5]). They define the action of Chinese
characterΓ on the space of Chinese characters:Γ̂ : B→ B, and they propose the following
conjecture to calculate the Kontsevich integral.

Theorem 1.3 (Wheeling conjecture [5]).The morphismΩ̂ : (B,mA) → (B,mB) is an
algebra homomorphism.

Kontsevich suggests that his method is applicable also to resolve this conjecture. Our
third purpose is to assure his claim precisely.

1.2.3. Sketch of Kontsevich’s construction
We give the sketch of Kontsevich’s construction of Duflo–Kirillov morphism. We regard

the algebra Sym(g) as the polynomial ring ong∗.
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Let α ∈ g∗ ⊗ g∗ ⊗ g be the canonical tensor which gives the bracket of Lie algebra, i.e.,
α(X, Y ) = [X, Y ]. We put

α̃ =
∑
n≥1

1

n!
Un(

n︷ ︸︸ ︷
α ∧ · · · ∧ α).

Since theα is a solution of the Maurer–Cartan equation for the differential graded Lie
algebraTpoly(g

∗), theα̃ gives a solution of the Maurer–Cartan equation for theDpoly(g
∗).

Hence it induces the deformation of the associative algebra Sym(g), which we denote by
(Sym(g),�).

From the solutions of Maurer–Cartan equationα andα̃, we obtain the deformed com-
plexesTpoly(g

∗)α andDpoly(g
∗)α̃.

We can see that the Sym(g) is the degree 0 part of the complexTpoly(R
d)[−1]. The

tangent mapTαU preserve the product structures in the cohomology level. In particular, by
applying the 0th cohomology part, we obtain the algebra isomorphism

TαU : Sym(g)g→ Center(Sym(g),�).

We can check thatX�Y − Y�X = [X, Y ] for any elementX, Y ∈ g. Hence there is the
algebra morphismU(g)→ (Sym(g),�) by the universality of the enveloping algebra. We
can show that it is isomorphism. In particular, we obtain the algebra isomorphismIalg

Center(U(g))→ Center(Sym(g),�).

There is the PBW isomorphism

Sym(g)g→ Center(U(g)).

Kontsevich found the form of the morphismsTαU and Ialg ◦ IPBW. Then he arrived at
the conclusion that the morphismTαU ◦ I−1

alg ◦ IPBW coincides with the Kirillov–Duflo
morphism.

1.2.4. Outline of proofs of the conjectures
We can solve the two conjectures by the following program:

1. Assume that we have two setsA andB with product structures and that there is the
‘PBW isomorphism’IPBW : B → A.

2. Using the Formality theorem or the combinatorics of it, we deform the product structure
on theB canonically to construct(B,�). There is the canonical morphismIT B →
(B,�). The compatibility of the cup products assures that the restriction of the mapIT
to the appropriate subset of theB preserves the product structure.

3. We construct the isomorphismIalg : A→ B which satisfies the two conditions:
3.1. it preserves the product structure;
3.2. the combinatorial structure of the construction coincides with that ofU(g) →

(Sym(g),�).
4. Then the composition of algebra isomorphismsIPBW◦Ialg−1 ◦IT coincides the Kirillov–

Duflo type morphism, because the combinatorics of the construction is same as that of
Kontsevich.
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1.3. Contents of the paper

We explain the contents of this paper. First, we introduce a variation of configura-
tion spacesCn,m, Cn and describe the stratification of the compactification. We define
l-admissible graph and its weight, and constructU ln as a generalization ofUn, i.e., we put
U ln =

∑
Γ WΓ · UΓ .

Following Kontsevich, we rewrite the Stokes formula, which leads the compatibility of
the two cup products (see Section 3.4 for more precise statement).

In [10], the signatures are not written clearly. We tried to make it clear how and why the
signatures appear, but the author is not certain whether his understanding of the formalism
with respect to the signature is standard, for it seems that there are several signature rules.
The rule we use in this paper is explained in Section 2.

In Sections 4 and 5, we give proofs of the RKV conjecture and the BGRT conjecture,
respectively.

1.4. Related works

We should mention the very closely related works by others. The RKV conjecture has
been proved by Andler et al. [1,2], and the BGRT conjecture has been proved by Thurston
[13] by other methods. As for the signature, Arnal, Manchon and Masmoudi handled the
problem (see [3]). The author believes that this paper is of value at least in our understanding
the marvelous work of Kontsevich.

2. Preliminaries

2.1. The signature

We often identify two groups{1,−1} andZ/2Z. For an elementδ ∈ {1,−1}, we denote
the corresponding element ofZ/2Z by δ′, i.e.,{1,−1} � δ ↔ δ′ ∈ Z/2Z.

In the following, we consider the vector spaces over the fieldR of real numbers. The
graded vector space1[k] with generator 1[k] is defined to be as follows:

1[k]i =
{

R, i = −k,
0, i �= −k.

For any graded vector spaceX, we regard the shiftX[k] as the1[k] ⊗X. For any element
x of theX, we denote 1[k] ⊗ x by x[k].

The dg-rule says that if we exchange the order of two objects with the degreesk andl,
respectively, it appears the signature(−1)kl. For example, we have the natural morphism

X[k1] ⊗ Y [k2] → (X ⊗ Y )[k1+ k2],

x[k1] ⊗ y[k2] = (1[k1] ⊗ x)⊗ (1[k2] ⊗ y) 
→ (−1)deg(x)k21[k1+ k2] ⊗ (x ⊗ y).

Based on the dg-rule, we follow the dg-composition rule in the paper, which we explain
by the simple example. LetXi(i = 1,2,3,4) be graded vector spaces. Assume that the
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operations◦ : X1⊗ X3 → V and• : X2⊗ X4 → W are given. In this case the operation
◦ ⊗ • : ⊗Xi [ki ] → V ⊗W [

∑
ki ] is defined as follows: we regard the vector spaceX[k]

as Letxi be any object ofXi with degree|xi |:
1. Start fromx1[k1] ⊗ x2[k2] ⊗ x3[k3] ⊗ x4[k4].
2. Bringing the shifts 1[ki ]⊗ to top, we obtainx1⊗ · · · ⊗ x4[

∑
ki ]. The signatures appear

when we exchange the order of the 1[ki ] andxj for j < i. Thus the signature
∑ |xj | ·

(
∑4

p=j+1 kp) appears.
3. Exchanging the order ofx2 andx3, we obtainx1 ⊗ x3 ⊗ x2 ⊗ x4[

∑
ki ]. The signature

|x2| · |x3| appears.
4. We arrive at the element(x1 ◦ x3)⊗ (x2 • x4)[

∑
ki ].

Hence the total signature is
∑ |xj |(

∑4
p=j+1 kp)+|x2| · |x3|, i.e.(◦⊗•)(x1[k1]⊗x2[k2]⊗

x3[k3] ⊗ x4[k4]) is defined to be(−1)
∑ |xj |(

∑4
p=j+1 kp)+|x2|·|x3|(x1 ◦ x3) ⊗ (x2 • x4)

[
∑

ki ].
Let V · be a graded vector space. For anyn elementsγi ∈ V li and any elementσ ∈

Σn, the symmetric differential graded signature sgn(σ, (γp)) is defined by the following
formula:

γ1 · · · γn = sgn(σ, (γp))γσ1 · · · γσn,
where· denotes the symmetric product in the graded vector spaces. On the other hand,
the anti-symmetric differential graded signature asgn(σ, (γp)) is defined by the following
formula:

γ1 ∧ · · · ∧ γn = asgn(σ, (γp))γσ1 ∧ · · · ∧ γσn .

Remark 2.1. For any elementσ ∈ Σn, we denote the usual signature ofσ by asgn(σ ).

For integerslp(p = 1, . . . , n), sgn(σ, (lp)) and asgn(σ, (lp)) are defined naturally.
If the grade |γp| is even for eachγp, the signature sgn(σ, (γp)) is 1. On the

other hand, if the grade|γp| is odd for anyp, then the signature sgn(σ, (γp)) equals asgn(σ ).
For anyi, j ∈ {1, . . . , n}(i < j), we denote byκij the following permutation:

(1, . . . , n)→ (1, . . . , i − 1, i, j, i + 1, . . . , j − 1, j + 1, . . . , n),

and denote byκji the following permutation:

(1, . . . , n)→ (1, . . . , i − 1, j, i, i + 1, . . . , j − 1, j + 1, . . . , n).

2.2. Two differential graded Lie algebras

Let A be a graded commutative algebra over the fieldR of real numbers, andg be a
differential graded Lie subalgebra of DerR(A). We assume that there are homogeneous
elementsv1, . . . , vp ∈ g· such thatg· = ⊕iAvi and that [vi, vj ] = 0. We have the action
of g ong asγ (

∑
aivi) =

∑
γ (ai)vi .
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Example. We have the following examples:

A = C∞(Rd|e): the ring of functions on super spaceR
d|e. We putg = DerR(A).

A = C∞(Rd)⊗ R·, whereR· graded Artinnian ring overR. We putg := DerR(A).

We can take the canonical basisvi for g. We put as follows:

Tpoly(A
·) := ⊕

k≥0
Λkg·[−k + 1], D·poly(A

·) := ⊕
k≥0

k⊗
A

Diff (A)[−k + 1].

2.2.1. Tpoly(A
·)

We give the differential graded Lie algebra structure toTpoly(A
·) as follows: consider

any two elements

ξ = ξ0 ∧ · · · ∧ ξk ∈ Λk+1g·, η = η0 ∧ · · · ∧ ηl ∈ Λl+1g·,

whereξi andηj are homogeneous elements ofg·. Forξ, we put as follows:

ξ̄i = ξ0 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ · · · ∧ ξk.

We define the bracket operator as follows:

[ξ[k], η[l]] =
∑
i=0

∑
j=0

ε(i, j)([ξi, ηj ] ∧ ξ̄i ∧ η̄j )[k + l], (1)

where we put as follows:

ε(i, j)′ := i + j + |ξi |
(
i−1∑
|ξp|
)
+ |ηj |


j−1∑

|ηq |



+|ηj |
(∑

|ξp| − |ξi |
)
+ l
(∑

|ξp|
)

(mod 2).

The termsi + |ξi |(
∑i−1 |ξp|) andj + |ηj |(

∑j−1 |ηq |) is due to the anti-commutativity
of the wedge product. The term|ηj |(

∑ |ξp| − |ξi |) + l(
∑ |ξp|) appears because of the

dg-composition rule for the operation

(g⊗Λkg)[−k] ⊗ (g⊗Λlg)[−l] → (g⊗Λk+lg)[−k − l].

We define the operation• as follows:

ξ[k] • η[l] =
∑
i=0

(−1)k−i+|ξi |(
∑

p>i |ξp |)+(
∑ |ξp |)l ξ̄i ∧ ξi(η)[k + l]. (2)

We have the following equality inZ/2Z:

k − i + |ξi |
∑
p>i

|ξp| + l
∑

|ξp| + |ηj |
j−1∑

|ηq | + j

+(|ξi | + |ηj |)
(∑

|ξp| − |ξi |
)
+ k ≡ ε(i, j)′. (3)
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Thus it holds that

ξ[k] • η[l] =
∑
i=0

∑
j=0

ε(i, j)(ξi(ηj ) ∧ ξ̄i ∧ η̄j )[k + l]. (4)

Hence, we obtain the following lemma.

Lemma 2.1. The following equality holds:

[ξ[k], η[l]] = ξ[k] • η[l] − (−1)|ξ[k]|·|η[l]|η[k] • ξ[l].

2.2.2. Dpoly(A)

For a graded algebraA· over a fieldk, we putCpoly(A
·) := ⊕lHom(A·⊗l , A·)[−l + 1].

The following operations on theCpoly are closed for theDpoly.
The grading of the vector space Hom(A·⊗l , A·) is defined as follows: the degree of

an elementΨ ∈ Hom(A·⊗l , A·) is r if Ψ = 0 or if it holds that|Ψ (x1 ⊗ · · · ⊗ xl)| −∑ |xi | = r for any homogeneous elements ofA·. For the elementΦ = Ψ [−l + 1] ∈
Hom(A·⊗l , A·)[−l + 1], we put |Φ|1 := |Ψ | and |Φ|2 := l − 1. We put that|Φ| =
|Φ|1+ |Φ|2.

For anyΦ ∈ Hom(A⊗r , A)[−r + 1] with |Φ|2 = s, which we call homogeneous, and
for any homogeneous elementap ∈ A[1], we put as follows:

Φ(a1⊗ · · · ⊗ ar) := (−1)
∑
(r−i+1)|ai |+r·|Φ|Φ[r − 1](a1[−1]⊗ · · · ⊗ ar [−1])[1],

where the signature is determined by the dg-composition rule. For any homogeneous ele-
mentsΦ ∈ Cpoly andai ∈ A[1], we put as follows:

F i
l (Φ)(a1⊗ · · · ⊗ al) := (−1)

∑i−1
p (|ai |)|Φ|a1⊗ · · · ⊗Φ(ai ⊗ · · · )⊗ · · · ⊗ al, (5)

where the signature is obtained as the dg-symmetric signature of the transformation

Φ ⊗ a1⊗ · · · ⊗ al 
→ a1⊗ · · · ⊗Φ ⊗ ai ⊗ · · · ⊗ al.

We putFl(Φ) := ∑
i≥1F

i
l (Φ). Hence, we obtain the homomorphismsF = (Fl) and

F i = (F i
l ) from the Hom(A⊗r , A)[−r+1] to the

∏
mHom(A⊗m,A⊗m−r+1)[−r+1]. We

denote byπ the natural projection∏
m

Hom(A⊗m,A⊗m−r+1)[−r + 1] → Hom(A⊗r , A)[−r + 1].

We have thatπ ◦ F = id. We define the compositionΦ1 ◦ Φ2 asΦ1 ◦ Φ2 := π(F (Φ1) ◦
F(Φ2)), where the second◦ denotes the composition of the morphisms. Also, we define
thatΦ1 ◦i Φ2 = π(F (Φ1) ◦ F i(Φ2)).

Usually, the differential graded Lie algebra structure of theCpoly is given by the Gersten-
haber bracket, i.e., for two homogeneous elementsΦ1 andΦ2, the Gerstenhaber bracket
[, ]′ is defined as follows:

[Φ1, Φ2]′ := Φ1 ◦Φ2− (−1)|Φ1|·|Φ2|Φ2 ◦Φ1. (6)
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The differentiald is defined asd(x) = [m, x]′, wherem denotes the multiplicationA ⊗
A → A. In this case, the Maurer–Cartan solution induces a formalA∞-deformation of
the associative structurem of theA, i.e., the formal deformatioñd of the differential of
Cpoly(A). Also, it induces anA∞-deformation of the associative differential graded algebra
Cpoly(A)[−1] as follows: we putµ̄ := µ + m. We have the decomposition̄µ = ∑

µl ,
where theµl belongs to the Hom(A⊗l , A·). Consider elementsti ∈ Hom(A⊗ri , A)[−ri+1]
with |ti |1 = si , which we call homogeneous. We put for homogeneous elementsap of the
A[1]

�(t1⊗ · · · ⊗ tn)(a1⊗ · · · ⊗ am)

=
∑

ε({ti}, {ap}, {kq})a1⊗ · · · ti (aki ⊗ · · · ⊗ aki+ri−1)⊗ · · · ,

where we putε({ti}, {ap}, {kq})′ = (−1)
∑l

i=1(|ti |)
∑i−1

p (|ap |) which is the dg-symmetric sig-
nature of the transformationt1⊗· · ·⊗ tl⊗a1⊗· · ·⊗am 
→ a1⊗· · ·⊗(ti⊗ai⊗· · · )⊗· · · .
Thus, we obtain the homomorphism

� :
n⊗
i=1

Hom(A⊗ri , A)→
∏
m

Hom
(
A⊗m,A⊗(m−

∑
(ri−1))

)
.

Defineµ̃l : ⊗lCpoly → Cpoly for l ≥ 2 as

µ̃l(t1⊗ · · · ⊗ tl) := π(F (µ̄) ◦ (�(t1⊗ · · · ⊗ tl))).

We putµ̃1 = ad(µ̄).
We obtain the following lemma, which may be well known, by a direct calculation.

Lemma 2.2. It holds thatµ̃ ◦ µ̃ = 0.

Proof. We have the following equality:

µ̃ ◦ µ̃(t1⊗ · · · ⊗ tl)(a1⊗ · · · ⊗ am)

= µ ◦ µ(�(t1⊗ · · · ⊗ tl)(a1⊗ · · · ⊗ am))

−µ̃
(∑

(−1)
∑i−1 |tp |t1⊗ · · · ⊗ (ti ◦ µ)⊗ · · · ⊗ tl

)
(a1⊗ · · · ⊗ am)

+µ̃
(∑

(−1)
∑i−1 |tp |t1⊗ · · · ⊗ (ti ◦ µ)⊗ · · · ⊗ tl

)
(a1⊗ · · · ⊗ am). (7)

Hence we are done. �
We change the bracket ofCpoly(A) slightly as follows. For homogeneous elementsΦi ∈

Cpoly the changed bracket [, ] is defined as follows:

[Φ1, Φ2] := (−1)|Φ1|2·|Φ2|2[Φ1, Φ2]′. (8)

We putΦ1◦̄Φ2 = (−1)|Φ1|2|Φ2|2Φ1 ◦Φ2.
From the Maurer–Cartan solution for this differential graded Lie algebra structure, we

obtain the following structure which we callA′∞-structure. We have the elementµ̄ =∑µl
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as above. Then, we define the morphismµ̃(l ≥ 1) as follows:

µ̃l(t1⊗ · · · ⊗ tl)(f1⊗ · · · ⊗ fm)

= δ · π(F (µ) ◦ (�(t1⊗ · · · ⊗ tl)))(f1⊗ · · · ⊗ fm) (l ≥ 2),

µ̃1 = ad(µ) (l = 1),

where we put as follows:

δ′ ≡
l∑

i=1

|ti |2

 l∑

j=i
|tj |2+m− 1


+ l (mod 2).

The following lemma can be shown by a direct calculation.

Lemma 2.3. We have that̃µ ◦ µ̃ = 0.

Proof. We obtain the following equality by direct calculation:

µ̃ ◦ µ̃(t1⊗ · · · ⊗ tl)(a1⊗ · · · ⊗ am)

= ρ
∑

a+b=m−∑ |ti |2
(−1)abµa ◦ µb(�(t1⊗ · · · ⊗ tl)(a1⊗ · · · ⊗ am))

+
∑

a+b=m−∑ |ti |2
µb

(∑
(−1)

∑i−1 |tp |+a|ti |2t1⊗ · · ·

⊗ti ◦ µa ⊗ · · · ⊗ tl

)
(a1⊗ · · · ⊗ am)

−
∑

a+b=m−∑ |ti |2
µb

(∑
(−1)

∑i−1 |tp |+a|ti |2t1⊗ · · ·

⊗ti ◦ µa ⊗ · · · ⊗ tl

)
(a1⊗ · · · ⊗ am), (9)

where we put

ρ′ ≡
∑

|tp|2
p−1∑

|tq |2+
(
m−

∑
|tp|2

) l∑
p=1

|tp| + l (mod 2).

Hence we are done. �

2.3. Configuration spaces and its variation

Kontsevich introduced the configuration spacesCn,m andCn to prove the Formality
theorem. As a variation, we consider the following spacesXl

n,m andXl
n: note the nat-

ural isomorphismϕ : CRl+1,0 �
◦
∆l−1, where

◦
∆l−1 denotes the interior of the standard

(l−1)-simplex. We represent the mapϕ asϕ(x) = (p0(x) = 0, . . . , pl(x) = 1). We obtain
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the mapψ :
◦
∆l � ◦

∆l−1× R>0 → Cl+1,0 as

ψ(x, t) = (pi(x)+
√−1t).

We put
◦
X l
n,m = Cn,m×Cl+1,0 (

◦
∆l). It has the natural orientation. We denote the closure of the

◦
X l
n,m in theC̄n,m byXl

n,m. As is easily seen, we have the equality dimXl
n,m = 2n+m−2−l.

Similarly, we put
◦
X l
n = Cn×Cl+1

◦
∆l−1, where

◦
∆l−1 � CRl+1 ⊂ Cl+1 and denote its closure

in theC̄n byXl
n. We have that dimXl

n = 2n− 3− l. We denote the closure of
◦
∆l−1 in the

C̄l+1 byDl . We haveXl
n,m = C̄n,m ×C̄l+1,0

Dl .

The configuration spaces̄Cn,m have the natural stratifications defined by Kontsevich.
They induce those on theDl and theX̄l

n,m by restriction. We describe them in the following.
Observe that theXl

n,m and theDl are locally polyhedron for an appropriate coordinate.

2.3.1. The stratification of̄Cn,m

Consider the following data(T , α, φ, β) with the following conditions:

• T is an oriented tree with the unique root vertex and the unique root edge. We have the
natural order on the setVT of the vertices ofT (take the root point to be the minimal
point), and the natural order on the setET of the edges of theT (take the edge starting
at the root point to be the minimal point).

• φ is the mapET → {1,2} such that it holds thatφ(e) ≥ φ(e′) if e ≤ e′. We denote
by St(u), for any vertexu, the set of edgese starting fromu. We put Sti (u) = {e ∈
St(u)|φ(e) = i}.

SinceT is an oriented rooted tree, any vertexu except the root has the unique incoming
edgee(u). Thusφ gives the functionφ : VT → {1,2} by the correspondenceφ(u) =
φ(e(u)), φ(root) = 2.

• α is the decomposition En(T ) = En1(T ) # En2(T ) and the ordering of each set, where
En(T ) denotes the set of maximal edges.αi denotes the numbering of Eni (T ).

• β = (β(u)), whereβ(u) is an ordering of St2(u). Note thatβ gives the lexicographic
order to En(T ).

• If |St(u)| = 1, then it holds that St(u) = St1(u), andφ(e) = 2 for the edge ending atu.
• We assume that two orders on En2(T ) given byα andβ coincide.

Definition 2.1. We call such data a numbered oriented 2-tree of type(n,m).

Let (T , α, φ, β) be a numbered oriented 2-tree, andT ′ be an oriented tree obtained by
collapsing an edgee : u→ v ofT which is not maximal. We denote byū, the vertex obtained
by collapsing the edgee. Then the data(T ′, α′, φ′, β ′) is induced from the(T , α, φ, β) as
follows: we have the natural isomorphism En(T ) � En(T ′) henceα inducesα′. Since, we
have the inclusionET ′ ⊂ ET , the mapφ′ is obtained as the restriction. As is easily seen,
φ′ satisfies the condition. Ifφ(e) = 1, then St2(ū) = St2(u). Henceβ(u) inducesβ ′(ū).
Whenφ(e) = 2, we have that St2(ū) = (St2(u) − {e}) # St2(v). The ordersβ(u), β(v)
and the condition “for edgese′(�= e) ∈ St2(u), e′′ ∈ St2(v), e′ ≤ e′′ if and only if e′ ≤ e”
determine the unique orderβ ′(ū) on the St2(ū). Hence the collectionβ of orders inducesβ ′.
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Similarly, if theT ′ is obtained by collapsing some edges{ei} of theT , a data(T , α, φ, β)
induces the data(T ′, α′, φ′, β ′).

There is the natural ordering of the set

Sn,m := {(T , α, φ, β)|as above #En1(T ) = m,#En2(T ) = n}.
For two oriented 2-tree whose base trees coincide, we define(T , α, φ, β) ≤ (T ′, α′, φ′, β ′)
if α = α′, φ ≤ φ′ on En(T ), φ = φ′ onE(T )−En(T ), and the natural maps St2(u, φ

′)→
St2(u, φ) are order preserving for all verticesu. In general, we define(T , α, φ, β) ≤
(T ′, α′, φ′, β ′) if T ′ is obtained by collapsing some edges{ei} of T , and if it holds that
(T ′, α̃, φ̃, β̃) ≤ (T ′, α′, φ′, β ′), where (T ′, α̃, φ̃, β̃) is the data induced by the
(T , α, φ, β).

Take an oriented 2-tree(T , α, φ, β) of type(n,m). Then we have the subsetC(T,α,φ,β) ⊂
C̄n,m. The setC(T,α,φ,β) is isomorphic to the following product:

C(T,φ) :=
∏

v∈In(T )
φ(e(v))=2

C#St1(v),#St2(v) ×
∏

v∈In(T )
φ(e(v))=1

C#St1(u),

wheree(u) denotes the edge endingu for any vertexu. If we have that(T , α, φ, β) ≤
(T ′, α′, φ′, β ′), then the closure ofC(T ′,α′,φ′,β ′) contains the setC(T,α,φ,β). We have that
C(T,α,φ,β) ∩ C(T ′,α′,φ′,β ′) = ∅, if (T , α, φ, β) �= (T ′, α′, φ′, β ′).

The collection{C(T,α,φ,β)} gives a stratification of thēCn,m.

2.3.2. The stratification ofDl

The stratification ofC̄l+1,0 is inherited by theDl , i.e., for any numbered oriented 2-tree
T with type(l + 1,0), we putDlT := Dl ∩ CT . As is easily seen, ifDlT �= ∅, then it holds
that St(u) = St1(u) or St(u) = St2(u) for any inner vertexu of T . For suchT , we put
ε(u) = i if St(u) = Sti (u). TheDlT is isomorphic to the following product:

DlT �
∏

u∈In(T )
ε(u)≥φ(u)

◦
∆

#St(u)−2×
∏

u∈In(T )
ε(u)<φ(u)

◦
∆

#St(u)−1. (10)

We obtain the following equality:

dimDlT =
∑

u∈In(T )
ε(u)≤φ(u)

(#St(u)− 2)+
∑

u∈In(T )
ε(u)>φ(u)

(#St(u)− 1). (11)

In particular, the codimension 1 strata correspond to the following type of oriented 2-trees:

• The set of inner vertices ofT is In(T ) = {root, u}. For all non-minimal edgese, it holds
thatφ(e) = 1 and thatφ(e(root)) = 2. The corresponding stratum is the following:

Dl ∩ CT � ◦
∆
l0−1× ◦

∆
l1−2,

wherel0 = #St(root), l1 = #St(u) and it holds thatl0 + l1 = l + 1. This type can be
seen as the boundary of theC̄0,l+1× R+.
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• The set of inner vertices ofT is In(T ) = {root, u1, . . . , uk}. There are the edges root→ u

connecting root andu. We have that St(root) = St2(root) and that St(ui) = St1(u). The
corresponding stratum is the following:

DlT � C0,l0 ×
k∏

α=1

◦
∆
lα−1,

wherel0 = #St(root), lα = #St(uα) and it holds that
∑

lj = l + k.

2.3.3. The stratification ofXl
n,m

The stratification ofXl
n,m is obtained from that of̄Cn,m. Hence, we obtain the following

proposition.

Proposition 2.1. The list of the boundary strata with codimension1 of the X̄l
n,m is the

following type of oriented2-trees(T , α, φ, β):

1. The set of the inner vertices is{root, u}. We have thatSt(u) = St1(u), and thatφ(u) = 1.
By the numberingα, the set of the end points of the edge in theSt(u) contains at most
one element of the set{1, . . . , l}.

2. The set of the inner vertices is{root, u}. We have thatφ(u) = 2.By the numberingα, the
set of the end points of the edge in theSt1(u) is contained in the set
{l + 1, . . . , n}.

3. The set of inner vertices is{root, u}. We have thatSt(u) = St1(u), and thatφ(u) = 1.
By the numberingα, the set of the end points of the edge in theSt1(u) contains at least
two elements of the set{1, . . . , l}.

4. The set of inner vertices is{root, u1, . . . , ul}. We have thatφ(root→ ui) = 2. For the
edge e ending at an elementk ∈ {1,2, . . . , l} ⊂ En(T )2, it holds thatφ(e) = 1 if e
starts at the root and thatφ(e) = 2 if e starts at theui .

2.4. l-Admissible graphs,UΓ and the weight

In the following, we can use the notation in Kontsevich’s paper [10].

Definition 2.2. Let Γ be an admissible graph. Note that admissibility implies that there is
no edge ending at the start vertex. We denote the set of the first vertices (resp. the second
vertices) ofΓ by V 1

Γ (resp.V 2
Γ ).

We say thatΓ is of type(n,m, e) if #V 1
Γ = n,#V 2

Γ = m,#EΓ = e.
For l = 0,1, . . . , anl-admissible graphΓ is an admissible graph of type(n,m, e) with

the decompositionV 1
Γ = V

1,1
Γ # V 1,2

Γ , such that:

• V
1,1
Γ = {1, . . . , l + 1}, (#V 1,1

Γ = l + 1);

• for any pair(i, j) ⊂ V
1,1
Γ , there are no edges connectingi andj .

We denote the set ofl-admissible graph of type(n,m,2n + m − 2− l − k) by Gl,k
n,m.

If e = 2n + m − 2− l, we denote it also byGl
n,m. An usual admissible graph is called

∅-admissible graph.
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LetΓ be anl-admissible graph of type(n,m,2n+m−2− l). We define the linear map
UΓ of the⊗nTpoly[1] to theDpoly[1+ l]. Consider elements

γi = 1

(ki + 1)!

∑
Ji

asgn(Ji, (vp))γi,Ji vJi ∈ Λki+1Tpolyg,

whereJi runs through the set of ordered subset of{1, . . . , p} with #Ji = ki + 1, and
where we denote⊗p∈Ji vp by vJi . The mapI : EΓ → {1, . . . , p} corresponds to the term∏

γi,Ji · vJi [−ki + 1] in the development of theγ1[−k1+ 1]⊗ · · · ⊗ γl [−kl + 1].
Following the dg-composition rule, we defineδ(I ) as the signature given by the dg-

symmetric signature along the exchanges of the order∏
γi,Ji · vJi [−ki + 1]⊗

∏
fp[1] 
→

(∏
γi,Ji vJi ⊗ fp

) [∑
(−ki + 1)+m

]


→


∏
i∈V 1

Γ

∏
e∈St′(i)

vI (e) ⊗ γi,Ji


⊗


 ∏
j∈V 2

Γ

∏
e∈St′(j)

vI (e) ⊗ fj


[∑(−ki + 1)+m

]
.

(12)

We put forγ ′i = γ [−ki + 1] ∈ Tpoly(A
·)[1],

UΓ (γ
′
1⊗ · · · ⊗ γ ′n)(f1⊗ · · · ⊗ fm)

:=
∑

I↔{Ji }
δ(I )


∏
i∈V 1

Γ

∏
e∈St′(i)

vI (e)γi,Ji


⊗


 ∏
j∈V 2

Γ

∏
e∈St′(j)

vI (e)fj


 . (13)

Definition 2.3. LetΓ be anl-admissible graph of type(n,m,2n+m−2− l). The number
Wl

Γ is defined as follows:

Wl
Γ :=

∫
Xl
n,m

wΓ ,

wherewΓ denotes the Kontsevich form (see [10])

wΓ :=
n∏

k=1

1

(#Star(k))!

1

(2π)2n+m−2−l
∧
e∈EΓ

dφe.

We define the mapU ln,m for any natural numberl as follows:

U ln,m :=
∑

Γ ∈Gl
n,m

W l
Γ · UΓ : ⊗n(Tpoly(R

d)[1])→ Dpoly(R
d)[1+ l].

We putU ln :=∑mU
l
n,m. For l = ∅, we putU∅ := U0.
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2.5. The condition ofL∞-ness

We write down the condition for the morphismU = (Un) to be anL∞morphism. For a dif-
ferential graded Lie algebrag·, we putC(g·) := Sym(g·[1]). A morphismU : C(Tpoly)→
C(Dpoly) is said to be anL∞-morphism if and only ifU ◦ (1

2[, ]) = (d + 1
2[, ]) ◦ U .

We denote theTpoly and theDpoly by g1 andg2, respectively.
First we consider the following morphisms [, ] : Symn+1(g1[1])→ Symn(g1[1])[1]. For

an elementγ ∈ g1[1], the elementγ1 · · · γn+1 ∈ Symn+1(g1[1]) is mapped as follows:

γ1 · · · γn+1 
→
∑
i<j

sgn(κij , (γp))(−1)
∑i−1

p=1|γp |

(γ1 · · · γi−1 · [, ][−1](γi · γj ) · · · γn+1)[1]


→
∑
i<j

sgn(κij , γp)(−1)|γi [−1]|+∑k≤i−1|γk |

(γ1 · · · γi−1[γi [−1], γj [−1]][1] · · · γn+1)[1]. (14)

Hence, we have the following equalities:

Un

(
1

2
[, ](γ1 · · · γn+1)

)
=
∑
i<j

sgn(κij , γp)(−1)|γi [−1]|+∑k≤i−1|γk |Un(γ1 · · · γi−1

·[γi [−1], γj [−1]][1] · · · γn+1)[1]. (15)

By the definition of the bracket, the formula can be rewritten as follows:∑
i �=j

sgn(κij , γp)(−1)|γi [−1]|+∑k≤i−1|γk |Un(γ1 · · · γi−1 · (γi [−1]

•γj [−1])[1] · · · γn+1)[1]. (16)

Next we consider the following morphisms:

1

2
[, ] ◦ U : Symn+1(g1[1])→ ⊕

k+l=n+1
Symk(g1[1])⊗ Syml (g1[1])

→ g2[1] ⊗ g2[1] → g2[2]. (17)

Then an elementγ1 · · · γn+1 is mapped as follows:

γ1 · · · γn+1 
→
∑

k+l=n+1

1

k!l!

∑
σ∈Σn+1

sgn(σ, (γp))γσ1 · · · γσk ⊗ γσk+1 · · · γσn+1


→
∑

k+l=n+1
k,l≥1

1

k!l!

∑
σ∈Σn+1

sgn(σ, (γp))Uk(γσ1 · · · γσk )⊗ Ul (γσk+1 · · · γσn+1)


→ 1

2

∑
k+l=n+1
k,l≥1

1

k!l!

∑
σ∈Σn+1

sgn(σ, (γp))(−1)|Uk(γσ1 ···γσk )[−1]|

× [Uk(γσ1 · · · γσk )[−1],Ul (γσk+1 · · · γσn+1)[−1]][2] . (18)
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We put the differential ofDpoly as follows:dx= [m, x] = −(−1)|x|[x,m]. Then we have
d(x[1]) = −[m, x][1] = (−1)|x|[x,m][1]. Hence(d + 1

2[, ]) ◦ U(γ1 · · · γn+1) is described
as follows:

1

2

∑
k+l=n+1

1

k!l!

∑
σ∈Σn+1

sgn(σ, (γp))(−1)|Uk(γσ1 ···γσk )[−1]|

×[Uk(γσ1 · · · γσk )[−1],Ul (γσk+1 · · · γσn+1)[−1]][2] . (19)

By the definition of the brackets (6) and (8), we can rewrite it as follows:∑
k+l=n+1
k,l≥0

1

k!l!

∑
σ∈Σn+1

sgn(σ, (γp[1]))(−1)rs+|Uk(γσ1 ···γσk )[−1]|

×(Uk(γσ1 · · · γσk )[−1] ◦ Ul (γσk+1 · · · γσn+1)[−1])[2], (20)

where we putr = |Uk(γσ1 · · · γσk )[−1]|2, s = |Ul (γσk+1 · · · γσn+1)[−1]|2.
Therefore the condition forU to beL∞ is the following:

Formula(16) = Formula(20).

3. The compatibility of the cup products

Let Γ̄ be anl-admissible graph of type(n+1,m,2n+m−1− l). We rewrite the formula
obtained from the Stokes theorem for the integration of thedwΓ̄ on theXl

n+1,m,

0=
∫
Xl
n+1,m

dwΓ̄ =
∑
T

∫
∂T X

l
n+1,m

wΓ̄ ,

whereT runs through the list in the previous section.

3.1. The types which contribute non-trivially

By the same discussion as that in [10], using the lemma of Kontsevich, we obtain the
following list of the oriented 2-treesT = (T , α, φ, β) of type (n,m) such that

∫
∂T X

l
n+1,m

wΓ̄ does not vanish:

Type I(i, j ) T is of type I such that we have #St(u) = 1 and thatα(u)(St(u)) = {i, j}.
Type II(i) T is of type II such thatβ(root)(root→ u) = i.
Type III(i) T is of type III such that we have #St(u)=2 and thatα(u)(St(u))={i, i + 1}.
Type IV T is of type IV.

We describe the list of the graphs obtained in the cases above.

Proposition 3.1. The list of the graphs which must be considered is the following:

I(i, j ) Γ : an l-admissible graph of type(n,m,2n+m− 2− l) obtained by collapsing the
edgei → j to a point ij.
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II( i) Γ0 andΓ1: they satisfy the following:

• Γ0 is an l-admissible graph of type(n0,m0,2n0 +m0 − 2− l).
• Γ1 is a0-admissible graph of type(n1,m1,2n1+m1− 2).
• Γ1 is a subgraph ofΓ̄ whose second vertices are{i, . . . , i +m1 − 1}. Γ0 is obtained

by collapsingΓ1 to a point.

We describe the situation asΓ0 ⇒i Γ1.
III ( i) Γ : An(l−1)-admissible graph of type(n,m,2n+m−1− l) obtained by collapsing

two points to a point from two verticesi, i + 1 of the type(1,1).
IV Γ0 andΓα(iα = 1, . . . , k), whereΓ0 is a 0-admissible graph of type(n0,m0,2n0 +
m0 − 2). Γα is lα-graph of type(nα,mα,2nα + mα − 2− lα). Moreover, it holds that∑

nα = n+ 1,
∑

mα = m+ k
∑
(lα + 1) = l + 1.

We describe the situation asΓ0 ⇒jα Γα.

3.2. The contributions

LetM be a manifold with the boundary∂M. We determine the orientation of the boundary
as follows:

(The orientation ofM) = (The inner normal vector)× (The orientation of∂M).

Let γi be homogeneous elements ofTpoly[1] and fi homogeneous elements ofA·[1] in
the following. If homogeneousγi = (

∑
γiIvI )[−ki + 1] ∈ Λki+1g·, we put |γi |1 =

◦(γiIvI ), |γi |2 = −ki + 1. It holds that|γi | = |γi |1+ |γi |2 by definition.
In the following, we will rewrite the following by using Stokes formula:

∑
Γ̄ ∈Gl,1

n+1,m

∑
T

(∫
∂T X

l
n+1,m

wΓ̄

)
· UΓ̄ (γ1⊗ · · · ⊗ γn+1).

Note that theXl
n,m can be regarded as polyhedron locally, and hence we can use the Stokes

formula. In the following, we also denote the components of the boundary of theXl
n+1,m

by the∂Γ Xl
n+1,m, if the T and theΓ̄ give the graphΓ .

Definition 3.1. Let V be a graded vector space. Consider homogeneous elementsai ∈ V .
In the following, the transition froma1[l1]⊗· · ·⊗am[lm] to aσ(1)[lσ (1)]⊗· · ·⊗aσ(n)[lσ (n)]
means that the composition of the following exchange of the order:

a1[l1] ⊗ · · · ⊗ am[lm] 
→ a1⊗ · · · ⊗ am

[∑
lp

]

→ aσ(1) ⊗ · · · ⊗ aσ(n)

[∑
lp

]

→ aσ(1)[lσ (1)] ⊗ · · · ⊗ aσ(n)[lσ (n)]. (21)

Notice that we do not replace the order of the shift.

We use the following lemma to see the signatures, which can be shown by a direct
calculation.
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Lemma 3.1. The dg-symmetric signaturet (σ, (ai [li ])) of the transition above is the fol-
lowing in theZ/2Z:

t (σ, (ai [li ]))
′ := sgn(σ, (ai [li ]))

′ − sgn(σ, (|ai [li ]|2))′
= asgn(σ, (ai [li ]))

′ − asgn(σ, (|ai [li ]|2))′.

3.2.1. Case I(i, j)
LetΓ be anl-admissible graph of type(n,m,2n+m− 2− l). We denote byS(Γ, i, j)

the set ofl-admissible graphs̄Γ of type (n + 1,m,2n + m − 1− l) with the following
conditions:

• The edgei → j exists fori < j .
• The graphΓ is obtained from thēΓ by collapsing the edgei → j to the vertexij , whose

number isi.
• We denote the numbering of the first vertices of theΓ by nΓ , i.e.,nΓ : V 1

Γ

∼→{1, . . . , n}.
Then we have the following:

nΓ̄ (p) = nΓ (p) if nΓ (p) < j, nΓ̄ (p) = nΓ (p)+ 1 if nΓ (p) ≥ j,

under the isomorphismV 1
Γ̄
� V 1

Γ .

• The ordering of the St(p, Γ̄ ) is same as that of the St(p, Γ ) if nΓ (p) �= i, j . The ordering
of the St(i, Γ̄ )− {i → j} and the St(j, Γ̄ ) is the restriction of that of the St(ij).

Then it holds that

(−1)|γi |−1+∑p<i |γp |1t (κi,j , (γp))UΓ (γ1⊗ · · · ⊗ (γi [−1] • γj [−1])[1] ⊗ · · · ⊗ γn+1)

= 1

#St(i)

∑
Γ̄ ∈S(Γ,i,j)

asgn(τ )UΓ̄ (γ1⊗ · · · ⊗ γn+1), (22)

whereτ denotes the permutation of the order

{i → j} # St(ij ; Γ̄ )→ St(i) ∪ St(j).

The term #St(i)−1 appears because of the ambiguity of the order of the edgei → j in St(i).
On the other hand, we have the equality∫

∂Γ X
l
n+1,m

∧
e∈EΓ̄

dφe

=
∫
∂Γ X

l
n+1,m

sgn(κij , (|γp|2)) · asgn(τ ) · (−1)
∑

p≤i−1(|γp |2)dφeij ∧
∧
e∈EΓ

dφe

= (−1)
∑

p≤i−1(|γp |2)2π
∫
Xl
n,m

sgn(κij , (|γp|2)) · asgn(τ )
∧
e∈EΓ

dφe. (23)

Hence, we obtain the following equality:

WΓ = (−1)
∑

p≤i−1|γp |2asgn(τ )sgn(κij , (|γp|2)) #St(i)!#St(j)!

(#St(i)+ #St(j)− 1)!

∫
∂Γ Xl

n,m

wΓ̄ .
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Therefore, we obtain the following equality:

(−1)
∑

p≤i−1|γp |+|γi |−1sgn(κij , (γp))WΓ

·UΓ (γ1⊗ · · · ⊗ (γi [−1] • γj [−1])[1] ⊗ · · · ⊗ γn+1)

=
∑

Γ̄ ∈S(Γ,i,j)

(#St(i)− 1)!#St(j)!

(#St(i)+ #St(j)− 1)!

(∫
∂Γ Xl

n,m

wΓ̄

)
· UΓ̄ (γ1⊗ · · · ⊗ γn+1). (24)

As is easily seen, the number of graphsΓ such thatΓ̄ ∈ S(Γ, i, j) is (#St(i) + #St(j) −
1)!/(#St(i)− 1)!#St(j)!. Hence, we have the following formula:∑

Γ ∈Gl
n,m

(−1)
∑

k≤i−1|γk |+|γi [−1]|sgn(κij , (γp)) ·WΓ

·UΓ (γ1⊗ · · · ⊗ (γi [−1] • γj [−1])[1] ⊗ · · · ⊗ γn+1)

=
∑

T ,type I(i,j)

∑
Γ̄ ∈Gl,1

n+1,m(i→j)

(∫
∂T X

l
n+1,m

wΓ̄

)
· UΓ̄ (γ1⊗ · · · ⊗ γn+1), (25)

whereGl,1
n+1,m(i → j) is the set of graphs inGl,1

n+1,m such that it contains the edgei → j .
The casei > j is similar.

3.2.2. Case II(i)
Let Γ0 be anl-admissible graph of type(n0,m0,2n0 + m0 − 2 − l) andΓ1 be an

∅-admissible graph of type(n1,m1,2n1 + m1 − 2). We have the equalitiesn0 + n1 =
n + 1,m0 + m1 = m + 1. We denote byS(Γ0, Γ1, i) the set of unnumberedl-admissible
graph such that it is obtained from the graphsΓ0 andΓ1 by removing the vertexi of the
second type and by connecting the edges in the set St′(i) to the vertices of the graphΓ1.
The terminology “unnumbered” means thatΓ̄ is not given the numbering of the set of the
vertices of(1,2)-type. Notice thatVΓ = VΓ0 ∪ VΓ1. For any vertexp of the graphΓ̄ , the
ordering of the set St(p; Γ̄ ) are determined by that of the St(p′;Γ ), wherep′ denotes the
corresponding vertex in theΓ .

For any vertexv ∈ V 1
Γ0
# V 1

Γ1
, we denote theγi on the vertexv by ηv.

Lemma 3.2. We have the following equality:

δ1 · t (σ, (γp))UΓ0


 ⊗
v∈V 1

Γ0

ηv




f1⊗ · · ·

⊗UΓ1


 ⊗
v∈V 1

Γ1

ηv


 [−1](fi ⊗ · · · ⊗ fi+m1−1)⊗ · · · ⊗ fm




=
∑

Γ̄ ∈S(Γ0,Γ1,i)

UΓ̄ (γ1⊗ · · · ⊗ γl+1⊗ γl+2⊗ · · · ⊗ γn+1), (26)
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where we put as follows:

δ′1 ≡
∣∣∣∣∣UΓ1

(
⊗

v∈VΓ1

ηv

)
[−1]

∣∣∣∣∣ ·
i−1∑
|fq | +

∑
v∈V 1

Γ0

|ηv|1+ (i − 1)(m1+ 1) ∈ Z/2Z,

and where we give the numbering of the setV
1,2
Γ̄

by the{γp}, i.e., the number of the v
equals p if theγp is on the v, and whereσ is the permutation from the{γp} to the{ηv|v ∈
V 1
Γ0
} # {ηv|v ∈ V 1

Γ1
}.

Proof. We have to see the dg-symmetric signature of the following transition:

⊗
v∈V 1

Γ0

ηv ⊗
(
i−1⊗
q=1

fq

)
⊗

 ⊗
v∈V 1

Γ1

ηv ⊗
(
i+m1−1⊗
q=i

fq

)


 ∑
v∈V 1

Γ1

|ηv|2−m1+ 1


⊗ · · ·


→
(
⊗γj ⊗

(
m⊗
q=1

fq

)) ∑
v∈V 1

Γ1

|ηv|2−m1+ 1


 . (27)

We have the equality
∑

v∈V 1
Γ1
|ηv|2−m1+1= 2n1+m1−2−2n1−m1+1= −1. Hence

the dg-symmetric signature is as follows:

∑
v∈V 1

Γ1

|ηv| ·
i−1∑
|fq | − (i − 1) ·

∑
v∈V 1

Γ1

|ηv|2+
∑
v∈V 1

Γ0

|ηv|1+
i−1∑
|fq |1 ≡ δ′. (28)

Hence we are done. �

On the other hand, we must determine the signature of the integral, i.e., the orien-
tation of the boundary. We see the coordinate transformation around∂Γ0⇒Γ1X̄

l
n+1,m as

follows:

(z1, . . . , zn+1;p1, . . . , pm) ∼ (z1, . . . , zl+1, zσl+2, . . . , zσn0
;p1, . . . , pi−1,

pi+m1, . . . , pm; zσn0+1, . . . , zσn+1;pi, pi+1, . . . , pi+m1−1)× (−1)(m−(i+m1−1))m1

∼ (τ, z1, . . . , zl+1; zσl+2, . . . , zσn0
;p1, . . . , pi−1, pi+m1, . . . , pm)

×(zσn0+1, . . . , zσn+1;pi, pi+1, . . . , pi+m2−1)× (−1)(m−(i+m1−1))m1,

whereτ denotes the coordinate of the ‘center point’ of(zσn0+1, . . . , zσn+1;pi, pi+1, . . . ,

pi+m2−1). Furthermore, it is equivalent to the following orientation:

∼ (inner normal, z1, . . . , zl+1, zσl+2, . . . , zσn0
;p1, . . . , pi−1, p̄i , pi+m1, . . . , pm)

×(zσn0+1, . . . , zσn+1;pi, . . . , pi+m2−1)× δ2,

where we putδ′2 = (m1+ 1)(m0 + 1)+ (i − 1)(m1+ 1)+m0 + l.
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Hence, we obtain the following equality:

δ · sgn(σ, (γp))WΓ0WΓ1 · U lΓ0


 ⊗
v∈V 1

Γ0

ηv


 [−l − 1] ◦i U0

Γ1


 ⊗
v∈V 1

Γ1

ηv


 [−1]

=
∑ 1

(n− l)!

∫
∂Γ0⇒Γ1X

l
n+1,m

wΓ · UΓ̄ (γ ′1⊗ · · · ⊗ γ ′n+1), (29)

where we put as follows:

δ′ ≡ −
∑
v∈V 1

Γ0

|ηv|1+m0 + l + (m1+ 1)(m0 + 1)

≡
∣∣∣∣∣∣UΓ0


 ⊗
v∈V 1

Γ0

ηv


 [−l − 1]

∣∣∣∣∣∣+ l + 1+ (m0 + 1)(m1+ 1).

The numbering ofV 1,2
Γ̄

is given as above. Notice that the permutationσ ∈ Σn−l corresponds

to the numbering of the setV 1,2
Γ̄

. Notice also that the numberings of the graphsΓ0 andΓ1
do not effect the right-hand side. Therefore, we arrived at the following equality:

1

(n0 − l − 1)!n1!

×
∑

σ∈Σn−l

sgn(σ, (γp))δU
l
n0,m0

(γ1⊗ · · · ⊗ γl+1⊗ γσl+2 ⊗ · · · ⊗ γσn0
)[−l − 1]

◦iUn1,m1(γσn0+1 ⊗ · · · ⊗ γσn+1)[−1]

=
∑

T ,type II(i)

∑
Γ̄ ∈Gl,1

n+1,m

∫
∂T X

l
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1). (30)

3.2.3. Case III(i)
LetΓ be an(l− 1)-admissible graph of type(n,m,2n+m− 1− l). Assume thati < l.

We denote byS′(Γ, i) the set of anl-admissible graphs̄Γ of type(n+1,m,2n−m−1− l)

with the following conditions:

• The graphΓ is obtained from theΓ̄ by collapsing two verticesi andi + 1 to one edge
ī, whose number isi.

• The numbering of theVΓ̄ is nΓ̄ (p) = nΓ (p) if nΓ (p) < i, nΓ̄ (p) = nΓ (p) + 1 if
nΓ (p) > i under the isomorphismV 1

Γ − {ī} � V 1
Γ̄
− {i, i + 1}.

• The ordering of the set St(i) and St(i + 1) are the restrictions of that of the St(ī). The
orderings of the St(p) for any verticesp �= i, i+1 are inherited from the corresponding
vertices of theΓ .



T. Mochizuki / Journal of Geometry and Physics 41 (2002) 73–113 95

We have the following equality:

UΓ (γ1⊗ · · · ⊗ (γi [−2] ∧ γi+1[−2])[2] ⊗ · · · ⊗ γn+1)

=
∑

Γ̄ ∈Gl,1
n+1

sgn(τ ) · UΓ̄ (γ1⊗ · · · ⊗ γn+1), (31)

whereτ is the permutation of the order St(ī)→ St(i)#St(i+ 1). Moreover, we obtain the
following equality:

#St(i)!#St(i + 1)!

#St(ī)!
(−1)iWΓ · UΓ (γ1⊗ · · · ⊗ (γi [−2] ∧ γi+1[−2])[2] ⊗ · · · ⊗ γn+1)

=
∑∫

∂Γ X
l
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1). (32)

As is easily seen, the number of graphsΓ such that theΓ̄ is contained in theS′(Γ, i) is
#St(ī)!/#St(i)!#St(i + 1)!. Hence, we arrive at the following equality:

−
∑

Γ ∈Gl
n,m

(−1)i−1WΓ UΓ (γ1⊗ · · · ⊗ (γi [−2] ∧ γi+1[−2])[2] ⊗ · · · ⊗ γn+1)

=
∑

T ,type III(i)

∫
∂T X

l−1
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1). (33)

3.2.4. Case IV
In this case, the signature is slightly complicated. We give the proof of the case needed

whenA = C∞(Rd). Then we state the result in the general case:

The casel = 0. Similar to case II.
The casel ≥ 1. We only write the results in the casem0 = 2. It is divided into three cases:

1. We consider the situation corresponding to the following tree:

where the number is the value ofβ(root). Let Γ0 be a 0-admissible graph of type
(n0,2,2n0), andΓα(α = 1,2) be lα-admissible graphs of type(nα,mα,2nα + mα −
2− lα). We have

∑
nα = n+ 1,m1+m2 = m andlα �= ∅ for α = 1,2.

We denote byS(Γ0, Γ1, Γ2) the set of unnumberedl-admissible graphs obtained
from Γα by removing the vertices 1,2 ∈ V 2

Γ̄0
and connecting edges in St(1) and

St(2) to the vertices ofΓ1, Γ2. The orderings of stars are inherited from those
of Γα.



96 T. Mochizuki / Journal of Geometry and Physics 41 (2002) 73–113

We have the following equality:

δ1 · t (σ, (γp))× UΓ0[−1]

(
⊗

v∈Γ0

ηv

)UΓ1


 ⊗
v∈V 1

Γ1

ηv


 [−l1− 1](f1⊗ · · · ⊗ fm1)

⊗UΓ2


 ⊗
v∈V 1

Γ2

ηv


 [−l2− 1](fm1+1⊗ · · · ⊗ fm)




=
∑

Γ̄ ∈S(Γk)
UΓ̄ (γ1⊗ · · · ⊗ γn+1)(f1⊗ · · · ⊗ fm). (34)

where we put as follows:

δ′1 ≡
∑
v∈V 1

Γ2

|ηv|1
m∑
i=1

|fi | +
2∑

q=1

(lq + 1)
q−1∑
t=1

∑
v∈V 1

Γt

|ηv|1+ (m2+ 1)
m1∑
i=1

|fi |1 (mod 2).

The numbering ofΓ̄ is thought by the same way as that in case II.
We must determine the signature of the integral. We putzi = ri +

√−1t (i =
1, . . . , l + 1, r1 = 0, rl+1 = 1). We consider the following coordinate transforma-
tions:

(t, r1= 0, r2, . . . , rl, rl+1 = 1, zl+2, . . . , zn;p1, . . . , pm)

� (t, zσl+2, . . . , zσn0+l+1;0,1, r1 = 0, r2, . . . , rl1+1, zσn0+l+2, . . . , zσn0+n1+l2+1;
p1, . . . , pm1; rl1+2, . . . , rl, rl+1 = 1, zσn0+n1+l2+2, . . . , zσn+1;
pm1+1, . . . , pm)× (−1)l2m1.

We puts1 = rl1+1−r1 = rl1+1 ands2 = rl+1−rl1+2 = 1−rl1+2. Then it is transformed
to the following:

�
(
t, zσl+2, . . . , zσn0+l+1;0,1; s1, r1 = 0,

r2

s1
, . . . ,

rl1

s1
,
rl1+1

s1
= 1,

zσn0+l+2

s1
, . . . ,

zσn0+n1+l2+1

s1
; p1

s1
, . . . ,

pm1

s1
; s2,0, rl1+2, . . . , rl, rl+1 = 1,

zσn0+n1+l2+2, . . . , zσn+1;pm1+1, . . . , pm

)
× (−1)l1+l2m1,

where we putz = (1/s2)(z− 1)+ 1. Notice the following equality:

l1+ l2m1 ≡ l1+ 1+ (l2+ 1)m1+ (m2− 1)m1+ 2+ (m1− 1)+ (m2− 1)m1.
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Hence, we obtain the following:

δ · sgn(σ, (γp))WΓ0WΓ1WΓ2

×UΓ0


 ⊗
v∈V 1

Γ0

ηv




UΓ1


 ⊗
v∈V 1

Γ1

ηv


 [−l1− 1](f1⊗ · · · ⊗ fm1)

⊗UΓ2


 ⊗
v∈V 1

Γ2

ηv


 [−l2− 1](fm1+1⊗ · · · ⊗ fm)




=
∑

Γ̄ ∈S(Γi)

∫
∂Γ0⇒Γi

Xl
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1)(f1⊗ · · · ⊗ fm), (35)

where we put as follows:

δ′ ≡
2∑

q=1


jq−1∑

p=1

|fp|


∣∣∣∣∣∣UΓq


 ⊗
v∈V 1

Γq

ηv


 [lq − 1]

∣∣∣∣∣∣
+

2∑
q=1

(lq + 1)
q−1∑
t=0

∣∣∣∣∣∣UΓt

 ⊗
v∈V 1

Γt

ηv


 [lt − 1]

∣∣∣∣∣∣
+(m1− 1)+ (m2− 1)(m1) (mod 2). (36)

As in case II,σ corresponds to the numberings ofΓ̄ , and the numberings ofΓ1 and the
Γ2 do not effect the right-hand side.

Hence, we obtain the following equality:

1

(n0 − l − 1)!n1!n2!

∑
σ∈Σn−l

δ2 asgn(σ, (γp))Un0,2(γσl+2 ⊗ · · · ⊗ γσl+n0+1)

×(U l1(γ1⊗ · · · ⊗ γl1+1⊗ γσl+n0+2 ⊗ · · · ⊗ γσn0+n1+l2+1)

×[−l1− 1](f1⊗ · · · ⊗ fm1)⊗ U l1n1,m1

×(γl1+2⊗ · · · ⊗ γl+1⊗ γσn0+n1+l2+2 ⊗ · · · ⊗ γσn+1)

×[−l2− 1](fm1+1⊗ · · · ⊗ fm))

=
∑ ∑

Γ̄ ∈Gl,1
n+1,m

∫
∂T X

l
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1)(f1⊗ · · · ⊗ fm). (37)

2. We consider the following situation:
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LetΓ0 be an∅-admissible graph of type(n0,2,2n0) andΓ1 be anl-admissible graph
of type(n1,m1,2n1+m1− 2− l).

We denote byS(Γ0, Γ1,2) the set of unnumberedl-admissible graphs obtained from
the two graphsΓ0 andΓ1 by removing the vertex 2∈ V 2

Γ̄
and connecting the edges in

St′(2) to the vertices ofΓ1. The orderings are inherited from those ofΓ .
We have the following equality:

δ1U
0
Γ0

(
⊗

v∈Γ0

ηv

)f1⊗ U lΓ


 ⊗
v∈V 1

Γ1

ηv


 (f2⊗ · · · ⊗ fm)




=
∑

Γ̄ ∈S(Γ0,Γ1,2)

U l
Γ̄
(γ1⊗ · · · ⊗ γn+1)[−l1− 1](f1⊗ · · · ⊗ fm), (38)

where we put as follows:

δ′1≡ (−l − 1)


|f1|1+

∑
v∈V 1

Γ0

|ηv|


+ |f1| ·

∑
v∈V 1

Γ1

|ηv| − |f1|2 ·
∑
v∈V 1

Γ1

|ηv|2

≡ |f1|

∑

Γ1

|ηv| − 1− l


−m1− l + (l + 1)

∑
Γ0

|ηv| (mod 2). (39)

Again the numbering of̄Γ is given as in the previous cases.
We consider the following coordinate transformation:

(z1, . . . , zn+1;p1, . . . , pm)

� (zσl+1, . . . , zσn0+l+1;p1, z1, . . . , zl+1, zσn0+l+2, . . . , zσn+1;
p2, . . . , pm) (−1)l

� (τ, zσl+1, . . . , zσn0+l+1;p1) (z1, . . . , zl+1, zσn0+l+2, . . . , zσn+1;
p2, . . . , pm) (−1)l

� (inner normal, zσl+1, . . . , zσn0+l+1;p1, p̄2) (z1, . . . , zl+1,

zσn0+l+2, . . . , zσn+1;p2, . . . , pm) (−1)l .

Then we have the following equality:

(−1)lδ sgn(σ, (γp))WΓ0WΓ1UΓ0


 ⊗
v∈V 1

Γ0

ηv




×

f1⊗ U lΓ


 ⊗
v∈V 1

Γ1

ηv


 [−l − 1](f2⊗ · · · ⊗ fm)




=
∑

sgn(σ, (γp))
∫
∂Γ0⇒Γi

Xl
n+1,m

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1)(f1⊗ · · · ⊗ fm).

(40)
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As in the previous cases, we obtain the following formula:

1

n0!(n1− l − 1)!

∑
σ∈Σn−l

δ1 sgn(σ, (γp)) · Un0,2(γσl+2 ⊗ · · · ⊗ γσl+1+n0
)

×(f1⊗ U ln1,m−1(γ1⊗ · · · ⊗ γl+1⊗ γσl+2+n0
⊗ · · · ⊗ γσn+1)(f2⊗ · · · ⊗ fm))

=
∑ ∑

Γ̄ ∈Gl,1
n+1,m

∫
T

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1), (41)

where we put as follows:

δ′1≡ (l + 1)|Un0,2(γσl+2 ⊗ · · · ⊗ γσl+1+n0
)[−1]| + |f1| · |Un1,m−1(γ1⊗ · · ·

⊗γl+1⊗ γσl+2+n0
⊗ · · · ⊗ γσn+1)[−1− 1]| +m1 (mod 2). (42)

3. We consider the following situation:

We consider the following coordinate transformations:

(z1, . . . , zn+1, p1, . . . , pm)

� (zσl+2, . . . , zσn0+l+1;pmz1, . . . , zl+1, zσn0+l+2, . . . , zσn+1;
p1, . . . , pm−1) (−1)m−1+l

� (τ, zσl+2, . . . , zσn0+l+1;pm) (z1, . . . , zl+1, zσn0+l+2, . . . , zσn+1;
p1, . . . , pm−1) (−1)m−1+l

� (inner normal, zσl+2, . . . , zσn0+l+1; p̄1, pm)(z1, . . . , zl+1,

zσn0+l+2, . . . , zσn+1;p1, . . . , pm−1) (−1)m−2+l .

We obtain the following formula in this case:

1

n0!(n1− l − 1)!

∑
σ∈Σn−l

δ sgn(σ, (γp)) · Un0,2(γσl+2 ⊗ · · ·

⊗γσl+1+n0
)(U ln1,m−1(γ1⊗ · · · ⊗ γl+1⊗ γσl+2+n0

⊗ · · ·
⊗γσn+1)(f1⊗ · · · ⊗ fm−1)⊗ fm)

=
∑ ∑

Γ̄ ∈Gl,1
n+1,m

∫
T

wΓ̄ · UΓ̄ (γ1⊗ · · · ⊗ γn+1)(f1⊗ · · · ⊗ fm), (43)
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where we put as follows:

δ′ ≡ (l + 1)|UΓn0,2
(γσ(l+2) ⊗ · · · ⊗ γσ(l+1+n0))[−1]| +m (mod 2). (44)

The general case: We give only the result on the difference of the signature. First we see
the following lemma. We put̄ni =

∑i
p=1np.

Lemma 3.3. We consider the following transition:

⊗
v∈V 1

Γ0

ηv ⊗
j1−1⊗
q=1

fq ⊗
k∏

t=1




 ⊗
v∈V 1

Γt

ηv ⊗
jt+mt−1⊗
q=jt

fq




×


−∑

v∈V 1
Γt

|ηv| −mt + 1


⊗ jt+1−1

⊗
q=jt+mt

fq


 
→ ⊗

v∈V 1
Γ̄

ηv ⊗
m⊗
i=1

fi. (45)

Then the dg-symmetric signature along the transition is as follows:

k∑
q=1

( nq∑
t=1

|γσ(n̄q−1+t)|
)
·
jq−1∑
p=1

|fp| −
k∑

q=1

( nq∑
t=1

|γσ(n̄q−1+1)|2
)
·
jq−1∑
p=1

|fp|2+ t (σ )′

+
k∑

q=1

( nq∑
t=1

|γσ(n̄q−1)|2−mq + 1

)
·

n̄q−1∑

s=1

|γσ(s)|1+
jq−1∑
p=1

|fp|1



≡
k∑

q=1

( nq∑
t=1

|γσ(n̄q−1+1)|1
)
·
jq−1∑
p=1

|fp| +
k∑

q=1

(−mp + 1)


jq−1∑

p=1

|fp|1



+
k∑

q=1

(lq + 1)


n̄q−1∑

s=1

|γσ(s)|1

+ t (σ )′. (46)

On the other hand, we obtain the following lemma.

Lemma 3.4. The difference of the signature between
∏

WΓp and
∫
∂
wΓ̄ is

k∑
i=1

i−1∑
j=0

(mj − 1)(li + 1)+
∑

(mi − 1)(ji − 1)

+k +
k∑

i=1

(mi − 1)
i−1∑
j=0

(mj − 1)+ sgn(σ, (|γp|2))′.

Proof. It can be shown by the comparison of the orientations as in the previous cases.�
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Hence the total difference of the signature is the following inZ/2Z:

k∑
q=1

jq−1∑
p=1

|fp|
( nq∑
t=1

|γσ(n̄q−1+t)|1−mq + 1

)
+

k∑
q=1

(lq + 1)


n̄q−1∑

s=1

|γσ(s)| + ls + 1




+
k∑

i=1

(mi − 1)
i−1∑
j=0

(mj − 1)+ k + sgn(σ, γp)
′ (mod 2). (47)

It can be rewritten as follows:

k∑
q=1

jq−1∑
p=1

|fp|
∣∣∣∣∣UΓq

(
⊗

v∈Γq
ηv

)
[−lq − 1]

∣∣∣∣∣+
k∑

q=1

(lq + 1)
q−1∑
t=0

∣∣∣∣UΓt
(
⊗
v∈Γt

ηv

)
[−lt − 1]

∣∣∣∣
+

k∑
i=1

(mi − 1)
i−1∑
j=0

(mj − 1)+ k + sgn(σ, γp)
′ (mod 2). (48)

3.3. Formality theorem

In the casel = 0, the contribution of types I and II appears, and we obtain the following
equality:

0=
∑
i<j

(−1)|γi [−1]|+∑k≤i−1|γk |sgn(κij , (γp))

×U0
n (γ1⊗ · · · ⊗ (γi [−1] • γj [−1])[1] ⊗ · · · ⊗ γn+1)

+
∑
i<j

(−1)|γj [−1]|+∑k≤i−1|γk | sgn(κji , (γp))

×U0
n (γ1⊗ · · · ⊗ (γj [−1] • γi [−1])[1] ⊗ · · · ⊗ γn+1)

−
∑

n0+n1=n+1
m0+m1=m+1

1

(n0 − 1)!n1!

×
∑
σ∈Σn

sgn(σ, (γp))(−1)(m0+1)(m1+1)+U0
n0,m0

(γ1⊗γσ2⊗···⊗γσn0
)[−1]|

×U0
n0,m0

(γ1⊗ γσ2 ⊗ · · · ⊗ γσn0
)[−1] ◦i U0

n1,m1
(γσn0+1 ⊗ · · · ⊗ γσn+1)[−1]

−
∑

n0+n1=n+1
m0+m1=m+1

1

(n0)!(n1− 1)!

×
∑
σ∈Σn

sgn(σ, (γp))(−1)
(m1+1)(m0+1)+|U0

n0,m0
(γσ2⊗···⊗γσn0+1)|

×U0
n0,m0

(γσ2 ⊗ · · · ⊗ γσn0+1) ◦i U0
n1,m1

(γ1⊗ γσn0
⊗ · · · ⊗ γσn)[−1]. (49)
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It can be rewritten as follows:

0=
∑
i<j

(−1)|γi [−1]|+∑k≤i−1|γk | sgn(κij , (γp))U
0
n (γ1⊗ · · · ⊗ (γi • γj )⊗ · · · ⊗ γn+1)

+
∑
i<j

(−1)|γi [−1]|+∑k≤i−1|γk |sgn(κji , (γp))U
0
n (γ1⊗ · · · ⊗ (γj • γi)⊗ · · · ⊗ γn+1)

−
∑

n0+n1=n+1
m0+m1=m+1

1

(n0)!(n1)!

×
∑

σ∈Σn+1

sgn(σ, (γp))(−1)(m0+1)(m1+1)+|U0
n0,m0

(γσ1⊗···⊗γσn0
)|

×U0
n0,m0

(γσ1 ⊗ · · · ⊗ γσn0
) ◦i U0

n1,m1
(γσn0+1 ⊗ · · · ⊗ γσn+1). (50)

The equality shows theL∞-property of the morphismU = U0 as is seen in Section 2.5.

3.4. Cup products

Take an elementα ∈ Tpoly[1] such that the shiftα[−1] ∈ Tpoly is a solution of the
Maurer–Cartan equation forTpoly(R

d), which gives a solution̄α[−1] of the Maurer–Cartan
equation for theDpoly(R

d), we put as follows:

ᾱ =
∑
n≥1

tn

n!
Un(

n︷ ︸︸ ︷
α · · ·α).

We denote the multiplication of theC∞(Rd) by µ. We put µ̄ = µ + ᾱ. We have the
decomposition̄µ =∑ µ̄n.

The solutionα gives the formal deformation of the differential graded Lie algebra
Tpoly[[ t ]] by putting the differential asdx = t [α, x]. The complex(Tpoly[−1][[ t ]] , d)
is the differential graded Lie algebra with the cup product. The solutionᾱ gives the
A∞-deformation of the associativeDpoly[−1][[ t ]] by putting the differentialsd + ᾱ, i.e.,
dx= [µ̄, x][1]. We denote them by(Tpoly)α, (Dpoly)ᾱ, respectively.

We define the morphismU l,αn,m : ⊗l+1Tpoly[1] → Dpoly[1+ l] as follows:

U l,αn,m(γ1⊗ · · · ⊗ γl+1) = U ln,m(γ1⊗ · · · ⊗ γl+1⊗ α ⊗ · · · ⊗ α).

We define the morphismTαU : Tpoly[1] → Dpoly[1][[ t ]] as follows:

TαU(γ ) =
∑
n,m

tn−1

(n− 1)!
U0,α
n,m(γ ·

n−1︷ ︸︸ ︷
α · · ·α).

Moreover, we define the morphismT U l,α : ⊗l+1Tpoly[1] → Dpoly[1+ l][[ t ]] as follows:

T U l,α(γ1⊗ · · · ⊗ γl+1) =
∑
n,m

tn−l−1

(n− l − 1)!
U l,αn,m(γ1⊗ · · · ⊗ γl+1).

We haveTαU = T U0,α. We putxi = γi [−2].
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The contribution of type I to the integral
∫
Xl
n+1,m

dw̄Γ is summed as follows:

(n− l)(−1)
∑

p<i |γp |+1U l,αn,m(γ1⊗ · · · ⊗ (α[−1] • γi [−1])[1] ⊗ · · · ⊗ γl+1)[1]

+(n− l)(−1)
∑

p<i |γp |+|γi |−1U l,αn,m(γ1⊗ · · · ⊗ (γi [−1] • α[−1])[1]

⊗ · · · ⊗ γl+1)[1]. (51)

We have the following equality:(∑
(−1)

∑
p<i |γp |γ1⊗ · · · ⊗ (−α[−1] • γi [−1]+ (−1)|γi |−1γi [−1]

•α[−1])[1] ⊗ · · · ⊗ γl+1

)
[1]

=
(∑

(−1)
∑

p<i |γp |γ1⊗ · · · ⊗ (−[α[−1], γi [−1]][1])⊗ · · · ⊗ γl+1

)
[1]

= t−1d(γ1⊗ · · · ⊗ γl+1). (52)

Thus we obtain the following as the contribution of type I:

(n− l)U l,αn,mt
−1(d(x1⊗ · · · ⊗ xl+1)).

The contribution of type III is the following:∑
(−1)iU l−1,α

n,m (γ1⊗ · · · ⊗ (γi [−2] ∧ γi+1[−2])[2] ⊗ · · · ⊗ γl+1)[1].

We rewrite it as follows:

−U l−1
n,m(∧(x1⊗ · · · ⊗ xl+1)).

The contribution of type II can be written as follows:∑ (n− l)!

(n0 − l − 1)!n1!
(−1)(m1+1)(m0+1)+(l+1)+|(U l,α

n0,m0(γ1⊗···⊗γl+1)[−1−l])|

×(U l,αn0,m0
(γ1⊗ · · · ⊗ γl+1)[−1− l] ◦i µ̃n1[−1])[2+ l]. (53)

The contribution of type IV can be written as follows:∑
k∑

(lp+1)=l+1

(n− l)!

n0!
∏k

p=1(np − lp − 1)!
δ · π(F (µ̄n0)

◦�(U l1,αn1,m1
(γ1⊗ · · · ⊗ γl1+1)[−l1− 1]⊗ · · ·

⊗U lk,αnk,mk
(γl−lk ⊗ · · · ⊗ γl+1)[−lk − 1]))[l + 2], (54)

where we put as follows:

δ′ =
k∑

q=1

(lq + 1)


q−1∑

s=0

∣∣∣∣∣UΓs
(
⊗

v∈V 1
Γs

|ηv|
)

[−ls + 1]

∣∣∣∣∣



+
k∑

i=1

(mi − 1)
i−1∑
j=0

(mj − 1)+ k (mod 2).
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Thus we obtain the following equality:

T U l,α(d(x1⊗ · · · ⊗ xl+1))− T U l−1,α(∧(x1⊗ · · · ⊗ xl+1))

−ad(µ̄)(T U l,α(x1⊗ · · · ⊗ xl+1))

+
∑

∑k
i=1(li+1)=l+1

k≥2

π(F (µ̄)◦̄�(T U l1,α(x1⊗ · · · ⊗ xl1+1)⊗ · · ·

⊗T U l−lk+1,α(x1⊗ · · · ⊗ xl+1))) = 0. (55)

It is theA∞-property of the morphism(T U l,α|l = 0,1,2, . . . ).
In particular, we consider the caseA = C∞(Rn). In this case, we have thatµ̄ = µ̄2. We

obtain the following as the equality in the casel = 1:

T U1,α(d(x1⊗ x2))− T U0,α(x1 ∧ x2)− ad(µ̄)(T U1,α(x1⊗ x2))

+ µ̄(T U0,α(x1)⊗ T U0,α(x2)) = 0. (56)

It implies that the compatibility of the products in the cohomology level.

4. The RKV conjecture

4.1. The convolution product and its deformations

There is the convolution structure on the space of distributionsD′(g) from the structure
of vector space, i.e.,

∗g : D′(g)×D′(g)→ D′(g), u ∗g v(φ) = p∗1(u)� p∗2(v)(m
∗
0(φ)).

We denote the projectiong× g→ g to theith component bypi . We denote the summation
(g, h) 
→ g + h bym0. We putD′(g)[[ t ]] := D′(g)⊗ C[[ t ]].

We construct two deformations of the product structure as follows:

1. The first is the standard deformation by the structure of Lie group. LetU ⊂ g be a neigh-
borhood of 0 such that the map exp|U : U → U ′ = exp(U) ⊂ G is a diffeomorphism.
We denote the space of vector fields on the setU byX(U). We have the two inclusions
of theg into theX(U): anyX ∈ g gives the vector fieldX with the constant coefficients,
i.e.,Xf(x) = (d/dt)f (x + tX). On the other hand, anyX ∈ g induces the left invariant
vector fieldX̃ onG, which gives the vector field(exp∗)−1X̃ onU .

We putXt(x) = (exp∗)−1X̃(tx) ∈ X(U) for any t ∈ [0,1]. Obviously, it holds that
X0 = X and thatX1 = exp−1∗ X̃. We have the relation [Xt, Yt ] = t [X, Y ]t .
1.1. We obtain the pseudo-product structure(X, Y )→ mt(X, Y ): we can take an open

setV ⊂ U for anyt ∈ [0,1], there is the analytic mapmt : V × V → U given by
the following:

mt(X, Y ) = Exp(Xt ) ◦ Exp(Yt )(0) = (Exp(Xt ))exp(Y ),
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where Exp(Xt ) is the map obtained by the vector fieldXt . Obviously, it holds that
m0(X, Y ) = X + Y and thatm1(X, Y ) = exp−1(exp(X)exp(Y )). Thus we obtain
the family to connect the summation of the Lie algebra and the multiplication of
the Lie group.

1.2. For anyt ∈ [0,1], we obtain the deformation∗t : D′(K1, V ) × D′(K2, V ) →
D′(K1+K2, V ) of the convolution product

u ∗t v(φ) = p∗1(u)� p∗2(v)(m
∗
t (φ)).

The∗0 is the convolution forg and the∗1 is the convolution forG.
For anyu ∈ D′(K1, V ), v ∈ D′(K2, V ) and a test functionφ, we have the

C∞-function(u∗t v)(φ) of the variablet . We have the (not necessarily convergent)
Taylor series att = 0 of the(u ∗t v)(φ) which we denote by

∑
tnQn(φ). TheQn

is a differential operator with at most 2nth order of analytic coefficients. Thus the
∗t induces the formal deformation which we denote also by∗t .

2. The second deformation is essentially due to Kontsevich:
2.1. Letα ∈ g∗ ⊗g∗ ⊗g be the canonical tensor which gives the bracket of Lie algebra.

We put

Ut (α) =
∑
n≥0

tn

n!
Un(

n︷ ︸︸ ︷
α ∧ · · · ∧ α) ∈ Sym(g∗)⊗ Sym(g∗)⊗ Sym(g).

Here we regard the variablet as a formal parameter.

TheUn(
︷ ︸︸ ︷
α ∧ · · · ∧ α

n

) is the differential operator with at most 2n-order of poly-
nomial coefficients.

3. We obtain the formal deformation� with the formal parametert of the convolution
productD′(g)[[ t ]] ⊗D′(g)[[ t ]] → D′(g)[[ t ]]:

u�v(φ) = p∗1(u)� p∗2(v)(Ut (α)m
∗
0(φ)).

Due to the definition, theu�v(φ) is the formal power series
∑

Pn(φ)t
n. ThePn are

differential operators with at most 2nth order of analytic coefficients.

4.2. Proof of the conjecture

Kontsevich obtained the formal power seriesj1,t , j2,t ∈ C[g∗][[ t ]] (see [10]) of the form

ji,t = exp


∑
k≥1

c
(i)
2k t

2kTr((adα)2k)


 .

Proposition 4.1. We consider the following map(D′0(g)[[ t ]] , ∗t )→ (D′0(g)[[ t ]] ,�), u 
→
j2,t u.The two formal deformations of product structures are equivalent under the morphism.

Proof. We denote the Taylor series with respect to the variablet of thep∗1(j2u)�p∗2(j2v)

Utm∗0(φ) (resp.p∗1(u) � p∗2m
∗
t (j2φ)) by

∑
Pn(φ)t

n (resp.
∑

Qn(φ)t
n). Also, we denote
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the Taylor series with respect to the variablet of thep∗1(j2)p
∗
2(j2)Utm∗0(φ) (resp.m∗t (j2φ))

by
∑

P̄n(φ)t
n and

∑
Q̄n(φ)t

n. To compare thePn(φ) and theQn(φ), we only have to
compare theP̄n(φ) and theQ̄n(φ). Note that theP̄n(φ) and theQ̄n(φ) are defined for any
smooth function which are not necessarily test functions.

Lemma 4.1. For any analytic function f, we have the equalityP̄n(f ) = Q̄n(f ).

Proof. The restriction of the∗t to the space of distributions with 0-support is the product of
the enveloping algebra of the deformed Lie algebra with the bracket [X, Y ]t = t [X, Y ]. On
the other hand, the restriction of the� is the product constructed by Kontsevich (see Section
1). Thus the formal power seriesu�v for the variablet converges for any distributionu, v
with 0-support, and we know thatu�v = u ∗t v in this case. Since the supports ofu andv
are{0}, u ∗t v(f ) andu�v(f ) are defined for any analytic function, and they coincide, i.e.,
u∗t v(f ) = u�v(f ). It implies the equalitiesp∗1(u)�p∗2(v)P̄n(f ) = p∗1(u)�p∗2(v)Q̄n(f ).
Thus all of the Taylor coefficients of thēPn(f ) and theQ̄n(f ) coincide. Iff is analytic,
then theP̄ (f ) and theQ̄(f ) are analytic. Thus we are done. �

Lemma 4.2. For any test functionφ and distributionsu, v ∈ D′(U), it holds that

p∗1(ψu)� p∗2(ψv)(P̄n(φ)) = p∗1(ψu)� p∗2(ψv)(Q̄n(φ)).

Proof. For any analytic functionf defined onU , the functionQ̄n(f )−P̄n(f ) is constantly 0
due to the previous lemma. We can take a sequence of analytic functionsfi which converges
to φ onU with respect to anyCN -norm‖ · ‖CN,U , N = 1,2, . . . .

The sequencēQn(fi)− P̄n(fi) converges toQ̄n(φ)− P̄n(φ). Thus we are done. �

Thus we can conclude thatPn(φ) = Qn(φ) for any test functionφ, which implies the
claim of the proposition.

Next we consider the following mapΨ

(D′(g)[[ t ]] , ∗0)→ (D′(g)[[ t ]] ,�), u 
→ j1u.

Proposition 4.2. The restriction of the morphism to the relative invariant part preserves
the product structure.

Proof. We have constructed the morphismT U1,α in the previous section

(Symg⊗ g∗)⊗ Symg→ Symg[[ t ]] , Symg⊗ Symg⊗ g∗ → Symg[[ t ]] ,

There are ag[[ t ]]-valued polynomial functionf on theg×gand anR[[ t ]]-valued polynomial
functiong on theg× g, so that for any elementu⊗β ∈ Sym(g)⊗ g∗ andv ∈ Sym(g), the
T Uα,1(u⊗ β ⊗ v) is of the form

T Uα,1((u⊗ β)⊗ v) = (f (β)p∗1u� p∗2v + gp∗1u� p∗2βv)m
∗
0.
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TheT Uα,1(u ⊗ (v ⊗ β)) has a similar form. Thus the morphismT Uα,1 can be naturally
extended as the morphism

(D′(g)⊗ g∗)⊗D′(g)→ D′(g), D′(g)⊗ (D′(g)⊗ g∗)→ D′(g).
The calculation in the previous section shows that it holds that

j1(u ∗g v)− j1(u)�j1(v) = ±T Uα,1(ad(α)(u)⊗ v)± T Uα,1(ad(α)(v)⊗ u).

Note that the Leibniz rulee∗i (u∗g v) = e∗i (u)∗g v+u∗g (e∗i v) holds for the linear function
e∗i on theg, i.e., the element of theg∗, which assures that the formalism of the proof of the
Formality theorem works in this case.

Let {ei} be a basis of theg and {e∗j } be a dual basis of theg∗. The tensorα can be

written asα = ∑ akij e
∗
i ⊗ e∗j ⊗ ek. Then the vector field ad(α) on theg can be written as∑

akij e
∗
i e
∗
j ad(ek), whereXi = e∗i (X). We have the following easy lemma.

Lemma 4.3. It holds that∑
akij (ekδ) ∗g (e∗j u)⊗ e∗i = Deiu⊗ e∗i + χ̃0u,

whereδ is the delta function whose support is the origin ofg,andχ̃0 denotes the infinitesimal
character ofχ0.

Proof. It follows from the following direct calculation:∑
akijXi(ekδ) ∗g (e∗j u) = a

j
ijXiu+ akijXie

∗
j ek ∗ u = δχ0(X)u+DXu. �

The formula in the previous section shows that the products on theg-invariant parts (i.e.,
0th cohomology groups) are compatible under the morphismTαU = j1·. Hence the map
ΨI(g) preserves the product structure.

Therefore the isomorphism of the formal deformations

(I(g)[[ t ]] , ∗t )→ (I(g)[[ t ]](g), ∗0), u 
→ j−1
1 · j2 · u

preserves the product structures, i.e., for anyu ∈ I(K1, g), v ∈ I(K2, g) all of the Taylor
series with respect to the variablet of theu ∗0 v(φ) and thej1j

−1
2 (j−1

1 j2u) ∗t (j−1
1 j2v)(φ)

coincide for any test functionφ.
We have the (not formal) deformationsm0 andmt for any t ∈ [0,1] because of the

construction. The formal power seriesj−1
1 · j2 aboutt and on theg is also convergent.

We take a cut functionψ of U . LetW be a relative compact open subset of theU , which
contains the origin 0. Letψ be a function on theU such thatψ(x) = 1 on theW and the
support of theψ is a compact set of theU . The germ of theu and theψu are same. For any
analytic functionf , (ψu) ∗0 (ψv)(f ) andj1j

−1
2 (j−1

1 j2ψu) ∗t (j−1
1 j2ψv)(f ) are defined

due to the cut function and analytic with respect to the variablet . Thus the coincidence of
the Taylor series gives the equality(ψu)∗0 (ψv)(f ) = j1j

−1
2 (j−1

1 j2ψu)∗t (j−1
1 j2ψv)(f )

for any analytic functionf and for anyt ∈ [0,1]. For any test functionφ onU , we can take
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a sequence of analytic functionsfi which converges toφ on any compact setK contained
in U with respect to anyCN -norm‖ · ‖CN,U ,N = 1,2, . . . . Thus we can conclude that

(ψu) ∗0 (ψv)(φ) = j1j
−1
2 (j−1

1 j2ψu) ∗t (j−1
1 j2ψv)(φ)

for any test functionφ and for anyt ∈ [0,1].
Thus the two product structures on the spaces of germs of distributions(D′e(g), ∗0) and

the(D′e(g), ∗1) are compatible under the morphism of the multiplicationj1,t j
−1
2,t .

Kontsevich showed that the function obtained by the substitutiont = 1 to thej−1
1,t j2,t is

j1/2. Hence we are done.

5. The BGRT conjecture

First we give the outline of the proof. We introduce the two Lie algebras which act on the
B. They are the natural counterparts of theTpoly(R

d) and theDpoly(R
d). We can translate

the theory in the previous sections to this situation. Hence we have the following:

1. We can deform the algebra(B,mB). We denote the resulting algebra by(B,�).
2. We obtain the algebra homomorphism of the(B,mB) to the(B,�).
3. We construct the natural algebra homomorphism of the(A,mA) to the(B,�).
4. There is the PBW isomorphism from theB to theA.

Then we obtain the algebra homomorphism of the(B,mA) to the(B,mB). The combina-
torics of the construction is the same as that of Kontsevich [10], and hence the resulting
morphism is Duflo–Kirillov morphism.

5.1. Two differential graded Lie algebras

We introduce the following two definitions.

Definition 5.1. We call the set of univalent vertices of Chinese characterΓ by legs ofΓ
and denote the set of legs by Leg(Γ ).

Definition 5.2. An m-Chinese graph is a Chinese character with the decomposition

Leg(Γ ) = L∅ ∪
m

)
i=1

Li(Γ ).

We denote the set ofm-Chinese graph by CGm. We put CG :=∏mCGm. We put COm :=
span(CGm) and call it the group of them-Chinese operators. We put CO := )mCOm and
call it the groups of Chinese operators. The gradation of CO is given as COm = COm+1.

There is the morphism of the group CO to the differential graded Lie algebraG(B) =
⊕Hom(⊗m+1B,B), whose image DCO is the differential graded Lie subalgebra; i.e., to a
Chinese graphΦ, we associate the elementΦ̂ ∈ Hom(⊗m+1B,B). Φ̂(γ0 ⊗ · · · ⊗ γm) is
the sum of the Chinese diagrams which is obtained by connecting the legs in the Legk(Φ)
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and the legs ofγk along injective morphisms Legk(Φ)→ Leg(γk) for k = 1, . . . , m. The
vector space DCO has the gradation induced from that on theG(B).

Proposition 5.1. The DCO is a differential graded Lie subalgebra of theG(B).

Proof. It is obvious because the composition of any elementsΦ1, Φ2 ∈ DCO belongs to
the DCO. �

Definition 5.3. A specialm-Chinese graphΓ is anm-Chinese graph such that #Li = 1. We
denote the unique element ofLi(Γ ) by ei(Γ ) or ei . We denote the set of specialm-Chinese
graphs by the SCGm. We put SCOm := span(SCGm) which we call the group of special
m-Chinese operators.

We have the morphism of the group SCOm to the group Hom(Λm+1B,B), i.e., the
composition of the following morphisms:

SCO→ CO→ Hom
(
⊗m+1B,B

)
→ Hom(Λm+1B,B).

We denote the image by TCOm and we put TCO= ⊕TCOm.
We define the following operation on the TCO. For two elementsξ ∈ TCOk and

η ∈ TCOl , the elementξ • η ∈ TCOk+l is defined as follows: we consider the sum
of the special Chinese graphsζ which is obtained by connecting the edgeei(ξ) to an
edge in theL∅(η), which we denote byξ •i η, where the numbering ofζ is given as
follows:

ep(ζ) = ep(ξ) (p ≤ i − 1), ep(ζ) = ep+1(ξ) (i ≤ p ≤ k − 1),

ep(ζ) = ep−k(η) (k ≤ p).

We putξ•η :=∑k
i=0(−1)k+iξ•i η. The following lemma is shown by the same formalism

as that in Section 2.2.

Lemma 5.1. It holds that[ξ, η] = ξ • η− (−1)klη • ξ.

Using this lemma, we obtain the following proposition easily.

Proposition 5.2. The TCO is a differential graded Lie subalgebra of theN(B).

5.2. Parallel construction ofU ln

We construct theL∞-morphismU of the TCO[1] to DCO[1]. LetΓ be anl-admissible
graph of type(n,m, u) andγ1, . . . , γn be n elements of TCO[1] such that|γp| = #St
(p)− 2.

For any vertexi of the first type inΓ , we denote by St(i) the set of the edges starting ati,
and denote by St′(i) the set of the edges ending ati. Any bijectionIi : St(i)→ {e0, . . . , ek}
and any injectionJi : St′(i)→ L∅(γi) determine the Chinese operator: for any edgei → j ,



110 T. Mochizuki / Journal of Geometry and Physics 41 (2002) 73–113

Ii gives the leg ofγi andJj gives the leg ofγj if j is of the first type. By connecting them
for each edges, we obtain the Chinese graph which we denote byΓ (Ii, Jj , {γp}). Then we
obtain the following Chinese operator:

UΓ (γ1⊗ · · · ⊗ γn) =
∑
(Ii ,Jj )

Γ (Ii, Jj , {γp}).

Also, we obtain the following Chinese operator:

U ln(γ1⊗ · · · ⊗ γn) =
∑
m

∑
Γ ∈Gl

n,m

WΓ · UΓ (γ1⊗ · · · ⊗ γn).

Theorem 5.1. TheU = (Un) gives theL∞-morphism.

Proof. The same formalism of the proof of Formality theorem is available. �

Theorem 5.2. The compatibility of cup products in the cohomology level holds.

Proof. The same formalism of the proof in the caseTpoly(R
d),Dpoly(R

d) is
available. �

5.3. Proof of BGRT conjecture

We consider the special Chinese graph� which we callhito.

The numbering of edges is as in the picture

L∅(�) = {head}, L1(�) = {left leg}, L2(�) = {right leg}.
Because of the IHX-relation, the� is a solution of Maurer–Cartan equation for the differ-
ential graded Lie algebra TCO. We put as follows:

�̃ =
∑
n≥0

1

n!
U0
n (� · · ·�).

Then the�̃ gives the Maurer–Cartan solution for the differential graded Lie algebra DCO.
It gives the deformation of the structure of associative algebras, which we denote by
(B,�).

The tangent mapT�U : (B,mB) → (B,�) is given. It preserves the product structure
in the cohomology level by Theorem 5.2. Moreover, the differential of the(TCO)�, which



T. Mochizuki / Journal of Geometry and Physics 41 (2002) 73–113 111

is given by the±ad(�), vanishes as is checked easily. Hence, we conclude that the map
T�U : (B,mB)→ (B,�) preserve the product structure.

We can construct the algebra homomorphism of the(A,mA) to the(B,�) as follows.
We use the terminology ‘Chinese character diagrams’ for the diagrams which satisfies

all conditions of Chinese character diagram but replaced circles by the directed lines (see
[4, Section 3]). They are called ‘linear diagrams’ there.

We first construct the algebra homomorphism of the span(CCD) to the(B,�). Take a
Chinese character diagramΓ . Consider the trivalent vertices ofΓ which is on the directed
line of Γ . We give them the numbering which is increasing along the orientation of the
arrow:

The group span(CCD) has the gradation span(CCD) = span(CCD)m by the number of
the trivial vertices on the directed line.

We construct the Chinese operators�̃(m) inductively. We put�̃(2) = �̃. We put�̃(m) =
�̃(m−1) ◦1 �̃, and�̃(0), �̃(1) are the empty graphs.

Any m-Chinese graph naturally gives the map ofA toB, i.e., removing the directed line,
and either:

• combining legsLi to the vertexi if #Li = 1,
• doing nothing ifLi = ∅,
• 0 if #Li ≥ 2.

Thus the Chinese operator�̃(m) gives the morphismIalg from span(CCD)m toB.

Proposition 5.3. The morphismIalg gives the algebra homomorphism fromspan(CCD) to
(B,�).

Proof. It follows from the associativity of̃�. Note that(�̃ ◦2 �̃(l))�̃1�̃(m) = �̃(l+m). �

Proposition 5.4. The morphismIalg gives the morphism fromA to (B,�).

Proof. The associativity of̃� implies that�̃(m) = �̃(m−1) ◦i �̃.
We only have to prove that STU relations are preserved. The summands of�̃ which

contribute non-trivially are only empty-graph and�. We can check directly the descent of
the morphism by calculation, see the following picture: �



112 T. Mochizuki / Journal of Geometry and Physics 41 (2002) 73–113

Hence we obtain the algebra morphism(A,mA) → (B,�). On the other hand, we
have the PBW morphismB → A. Composing the morphisms, we obtain the algebra
homomorphism of the(B,mA) to (B,mB).

Since the combinatorics of the construction is the same as that of Kontsevich [10], the
obtained morphism is the Duflo–Kirillov morphism.

Hence we are done.

For further reading see [6–8,11].
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