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Abstract

We give the detailed proofs of some of Kontsevich'’s claims in the paper “Deformation Quantiza-
tion of Poisson Manifolds I, i.e., we prove the compatibility of the two cup products, and prove two
conjectures by using the formalism of the proof of Kontsevich'’s proof of his Formality theorem; the
conjecture of Ris, Kashiwara and Vergne and the conjecture of Bar-Natan, Garoufalidis, Rozansky
and Thurston. Moreover, we calculate how the signatures appear. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Our purpose in this paper is to understand some of Kontsevich'’s claims in his excellent
paper [10]. More precisely, we give the detailed proofs of the following:

1. The compatibility of the two cup products.

2. The conjecture of Rg, Kashiwara and Vergne which we call the RKV conjecture.

3. The conjecture of Bar-Natan, Garoufalidis, Rozansky, and Thurston which we call the
BGRT conjecture.

1.1. Formality theorem

In his celebrated paper [10], Kontsevich proved his Formality theorem which we explain
first. From a manifoldX, we obtain the differential graded Lie algebrag,y(X) and
Dpoiy(X) as follows:

. . . i+1
Tooy(X)' 1= M(X, A™TX), - Dpoy(X) 1= _ 8, Diff (X).
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There is the natural quasi-isomorphism of complegs (X) — Dpoly(X) by the follow-
ing correspondence: foragy e I'(X, TX)(i =0,...,n)

0
U{ ). Tpoly(X)n &N NE

> (fo®-~-®fn -y Hsign(a)éa,.(m) € Dpoly(X)".

o€yt

But it is not a morphism of differential graded Lie algebras.

Theorem 1.1 (Kontsevich). There is thel o, quasi-isomorphism
U : C(Tpoly(X)) = C(Dpoly(X)),
such thatt; : Tpoy(X)[1] = Dpoy(X)[1] coincides with/" .
Leta € Tpoly(RY) be a solution of the Maurer—Cartan equation fggiy(R?)

da + %[a, a]l =0.
n
We puta = anl(t”/n!)l/{n(a A -+ Aa) which is a solution of the Maurer—Cartan
equation foer0|y(]Rd). Thew anda give the formal deformation of differential graded
Lie algebraZpoly(RY),[[7]] and Dpoly(R?)z[[¢]]. The two complexTpoy(RY),[—1] and
Dp0|y(Rd)5,[—1] have the natural cup product. Kontsevich gave the outline of the proof of

the compatibility of two cup products in the cohomology level. Our first purpose is to make
it more detail.

1.2. Some applications

Formality theorem and the compatibility of the cup products are expected to have many
applications in various domains of mathematics.
As one of them, Kontsevich constructed the algebra homomorphism

Centertl(g)) — (Symg)?,

and showed that it coincides with the Duflo—Kirillov isomorphism, whegris a finite
dimensional Lie algebra arul(g) is the enveloping algebra. Moreover, he suggested that
two conjectures about the Duflo—Kirillov type morphism, the RKV conjecture and the BGRT
conjecture, can be resolved by his idea.

1.2.1. The RKV conjecture
Following the paper [9], we explain the RKV conjecture. ebe a finite dimensional
Lie group andy be the finite dimensional Lie algebra associated taxhé/e put as follows:

Z(g) = Cente(il(g)) = {bi-invariant differential operato}s

I(g) = Sym(g)® differential operator with constant coefficien}s
g9) = g9)° =

invariant under the adjoint action
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There is the Duflo—Kirillovisomorphism® : Z(g) — I(g) of algebras. Whegis semisim-
ple, it is the Harish—Chandra isomorphism.
There is the PBW isomorphism Sym) — $l(g), and its restriction to Syia)¥?, which
we also call PBW isomorphism.
The composition of the PBW homomorphism and the Duflo—Kirillov morphism can be
regarded as follows:

Sym(@? s V > Vo j(x)Y?,—0 € Sym(g)®,

wherej (x) = det((1 — e 9%)/a dx; g) : g — R. Under the Fourier transformation, it can
also be regarded as follows: for any polynomjabn g*

4\1/2
S <&) I
We can also regard(g) and Synig)? as the set of distributions with supports contained in
{0} and{e}, respectively.
Since the functiory (x) is analytic on a neighborhood, the above ndgapan be naturally
extended on the distributions on any open set ofGh&ake an open séf > ¢ of G and

the open set/’ > 0 of g such that exp U/ — U is diffeomorphic. We have the natural
isomorphism of the set of distributions éhandU’,

exp, : D'(U; 9)—D' (U, G).
The extended Duflo—Kirillov morphisn® : D'(U; G) — D'(U’; g) is given by the fol-
lowing correspondence:

ur jx)Y2. (exp) u.

Hence, we obtain the natural may(G) — Dy(g), whereD,(G) (resp.Dy(g)) means the
set of germs of distributions at(resp. 0).

Let K be a cone iy ~ T,G ~ Tog. For any elemeni of the D, (G) (resp. theDy(g)),
the germ of support af is defined, which induces the cotg(suppu) (resp.Co(suppu))
in the tangent spacE G = Tpg = g. We put

D.,(K,G) = {u € D,(G)|Cc.(suppu) C K},
Dy(K, g) = {u € Dy(g)|Co(suppu) C K}.

We have the natural morphisin: D,(K; G) — Dy(K; g). There are the adjoiz-actions
Ad of G on theG andg. If a subseK is an invariant under the adjoint action, then there are
the G-actions on theéD, (K, G) and theD( (K, g). We putxo(g) = |det(Ad(g): g)|. Then
we put as follows:
T,(K, G) = {u € D,(K, G)|u(ghg ™) = xo(g) ‘u(h)},
TH(K. g) = {u € Dy(K., g)lu(Ad(g)x) = xo(g) u(x)}.

There is the natural morphisth : 7,(K ; G) — Z,(K, g).
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For any invariant conek1, K> in g such thatk1 N (—K2) = {0}, the convolution product

xG 1 I,(K1, G) x T,(K2, G) — I,(K1+ K2; G),
g I(K1, 9) x I5(K2, 9) — Zy(K1 + K2; 9)

can be defined.
The problem is the following.

Problem 1.1. Does the morphisn® preserve the product structure? In other words, does
the following identity hold?

D (u xG v) = D(u) %5 P (V).

The affirmative answer is of importance for the harmonic analysis. In particular, the local
solvability of bi-invariant differential operators follows (see the papers [9,12]). In the pa-
per [9], Kashiwara and Vergne proposed the conjecture with respect to Campbell-Hausdorff
formula, and give the affirmative answer under the assumption that the conjecture is
true.

Kontsevich suggests that the problem is solvable affirmatively based on his theory (see
[10, Section 8]). Our second purpose is to give the precise proof of this claim, i.e., we prove
the following theorem.

Theorem 1.2. @ preserves the product structure

1.2.2. BGRT conjecture
We explain the conjecture of BGRT (see [4] for the terminology). They give the special
element

oo
2 = exp, 5 (sznwzn> ,
n=1

which we call Duflo—Kirillov element (see the paper [5]). They define the action of Chinese
character” on the space of Chinese charactérs: B — B, and they propose the following
conjecture to calculate the Kontsevich integral.

Theorem 1.3 (Wheeling conjecture [5])The morphisnﬁ (B,my) - (B,mpg) is an
algebra homomorphism

Kontsevich suggests that his method is applicable also to resolve this conjecture. Our
third purpose is to assure his claim precisely.

1.2.3. Sketch of Kontsevich’s construction
We give the sketch of Kontsevich'’s construction of Duflo—Kirillov morphism. We regard
the algebra Syrty) as the polynomial ring op*.



T. Mochizuki/ Journal of Geometry and Physics 41 (2002) 73-113 77

Leta € g* ® g* ® g be the canonical tensor which gives the bracket of Lie algebra, i.e.,
a(X,Y)=[X, Y] We put

n
1 —
o= Z—Mn(a/\~~/\a).
1n!
n>

Since thewx is a solution of the Maurer—Cartan equation for the differential graded Lie
algebraTpoy(g*), thea gives a solution of the Maurer—Cartan equation for Eigiy(g*).
Hence it induces the deformation of the associative algebra@ymvhich we denote by
(Sym(g), #).

From the solutions of Maurer—Cartan equatioanda, we obtain the deformed com-
plexesTpoly(g*)e and Dpoly(g)s -

We can see that the Syg) is the degree 0 part of the complé}gmy(Rd)[—l]. The
tangent maf, U preserve the product structures in the cohomology level. In particular, by
applying the Oth cohomology part, we obtain the algebra isomorphism

T.U : Sym(g)¥ — Cente(Sym(g), «).

We can check thak+Y — Y+X = [X, Y] for any elementX, Y € g. Hence there is the
algebra morphisril(g) — (Sym(g), +) by the universality of the enveloping algebra. We
can show that it is isomorphism. In particular, we obtain the algebra isomorghigm

Cente(l/(g)) — CentefSym(g), ).
There is the PBW isomorphism
Sym(g)? — Centeri(g)).

Kontsevich found the form of the morphisnisi/ and Iag o Ipgw. Then he arrived at
the conclusion that the morphisfiyi/ o I;gl o Ipgw coincides with the Kirillov—Duflo
morphism.

1.2.4. Outline of proofs of the conjectures
We can solve the two conjectures by the following program:

1. Assume that we have two setsand B with product structures and that there is the
‘PBW isomorphism’lpgy : B — A.

2. Using the Formality theorem or the combinatorics of it, we deform the product structure
on the B canonically to constructB, «). There is the canonical morphisfi B —
(B, ¥). The compatibility of the cup products assures that the restriction of thefmap
to the appropriate subset of tiBepreserves the product structure.

3. We construct the isomorphisfgg : A — B which satisfies the two conditions:
3.1. it preserves the product structure;
3.2. the combinatorial structure of the construction coincides with that(gf —

(Sym(g), +).

4. Then the composition of algebra isomorphisigisiv o I 41 o I coincides the Kirillov—
Duflo type morphism, because the combinatorics of the construction is same as that of
Kontsevich.
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1.3. Contents of the paper

We explain the contents of this paper. First, we introduce a variation of configura-
tion spacexC, ,, C,, and describe the stratification of the compactification. We define
I-admissible graph and its weight, and constidtias a generalization éf,, i.e., we put
U, =Y rWr-Ur.

Following Kontsevich, we rewrite the Stokes formula, which leads the compatibility of
the two cup products (see Section 3.4 for more precise statement).

In [10], the signatures are not written clearly. We tried to make it clear how and why the
signatures appear, but the author is not certain whether his understanding of the formalism
with respect to the signature is standard, for it seems that there are several signature rules.
The rule we use in this paper is explained in Section 2.

In Sections 4 and 5, we give proofs of the RKV conjecture and the BGRT conjecture,
respectively.

1.4. Related works

We should mention the very closely related works by others. The RKV conjecture has
been proved by Andler et al. [1,2], and the BGRT conjecture has been proved by Thurston
[13] by other methods. As for the signature, Arnal, Manchon and Masmoudi handled the
problem (see [3]). The author believes that this paper is of value at least in our understanding
the marvelous work of Kontsevich.

2. Preliminaries
2.1. The signature

We often identify two group$l, —1} andZ/2Z. For an element € {1, —1}, we denote
the corresponding element 4§27 by §', i.e.,{1, -1} 5 § < §' € Z/2Z.
In the following, we consider the vector spaces over the fieldof real numbers. The

graded vector spacik] with generator 1] is defined to be as follows:
. R, i=—k,
k) =
0, i#—k.

For any graded vector spa&e we regard the shifk[k] as thel[k] ® X. For any element
x of the X, we denote I{] ® x by x[k].

The dg-rule says that if we exchange the order of two objects with the degeset,
respectively, it appears the signatirel)<!. For example, we have the natural morphism

X[k1] ® Y[k2] — (X ® Y)[k1 + k2],

x[k1] ® ylk2] = Ak1] ® x) ® Ukl ® y) > (—1)%IR21[k; + ko] @ (x ® ).

Based on the dg-rule, we follow the dg-composition rule in the paper, which we explain
by the simple example. LeX; (i = 1, 2, 3, 4) be graded vector spaces. Assume that the
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operations : X1 ® X3 — V ande : X2 ® X4 — W are given. In this case the operation

o®e: ®X[ki] > V® W[D_k;]is defined as follows: we regard the vector spA{e]

as Letx; be any object of(; with degre€x;|:

1. Start fromx1[k1] ® x2[k2] ® x3[k3] ® xa[ka).

2. Bringing the shifts {;]® to top, we obtain ® - - - ® x4[>_ k;]. The signatures appear
when we exchange the order of théJ[andx; for j < i. Thus the signatur®_ |x;| -

(Zfa:m_kp) appears. _ |
3. Exchanging the order ab andxs, we obtainy ® x3 ® x2 ® x4[)_ k;]. The signature
|x2| - |x3| appears.
4. We arrive at the elemelity o x3) @ (x2 @ xa)[>_ ki].

Hence the total signature }s |Xj|(zi:j+l kp)+1x2] - |x3l, i.e. (o ® ®) (x1[k1] ® x2[k2] ®
x3[k3] ® xal[ks]) is defined to be(—l)z‘x-fl(zf'l’=-f+1k”)+|x2"|x3‘(xl 0x3) ® (x2 ® x4)

[kl

Let V' be a graded vector space. For anglementsy; € V% and any element e
2, the symmetric differential graded signature &gr(y,)) is defined by the following
formula:

V1Yo = SN0, (¥p))Vor " " Vou»

where- denotes the symmetric product in the graded vector spaces. On the other hand,
the anti-symmetric differential graded signature asguy,)) is defined by the following
formula:

YIA - AYn =asgno, (Vp))Voy A+ A Vo,

Remark 2.1. For any element € X, we denote the usual signaturecoby asgrio).

Forintegers,(p = 1,...,n), sgno, (I,)) and asgtw, (I,,)) are defined naturally.

If the grade|y,| is even for eachy,, the signature sgm, (y,)) is 1. On the
other hand, ifthe grade, | is odd for anyp, then the signature sgn, (y,,)) equals asgi ).

Foranyi, j € {1,...,n}(i < j), we denote by;j the following permutation:

@Q....n)> @, ...;i—=14,j,i+1...,j-1j+1...,n),
and denote by;ji the following permutation:

A....on)—>@Q,....i—1j,ii+1....j—1j+1....n).
2.2. Two differential graded Lie algebras

Let A be a graded commutative algebra over the fleldf real numbers, ang be a
differential graded Lie subalgebra of Qgi). We assume that there are homogeneous
elementss, ..., v, € g such thaig = @;Av; and that {;, v;] = 0. We have the action

ofgongasy(Q_aiv)) = > y(aiv;.
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Example. We have the following examples:

A = C*®(R4l): the ring of functions on super spaké¢. We putg = Derr(A).
A =C®[R%) ® R, whereR graded Artinnian ring oveR. We putg := Derg(A).

We can take the canonical basjsfor g. We put as follows:

k.
Tooy(4) = & G-k +1],  Dpoy(A) := & © Diff (A)[—k + 1],

We give the differential graded Lie algebra structurelgy (A") as follows: consider
any two elements

E:So/\.../\SkGAk—ﬁ—lg-, 77=710/\~-/\7)1€Al+lg',
whereg; andn; are homogeneous elementsgafFor &, we put as follows:
éi =§0/\.'./\gifl/\sl:i'l/\"'/\Sk.

We define the bracket operator as follows:

[E[k]. 1)) = D0 el (& 0] A& ARpIK+1], (1)

i=0,=0

where we put as follows:
i—1 j—1
€l j) =i+ j+ & (Zw) +Injl (Z|nq|)
+Hinil (Y1651 — 181) +1 (D 16,1) - (mod 2.

The termsi + |&|(X" " 1€,) andj + ;1371 |n,1) is due to the anti-commutativity
of the wedge product. The term;|(Q_ 15,1 — I&]) + (3 |€,]) appears because of the
dg-composition rule for the operation

g® A'9l-k® (@ A'g[-1] - @& A g[-k—1].
We define the operationas follows:

Ek] o qll] = Y (—D)F I S DH IS D E A g [k +1]. 2)
i=0

We have the following equality i /27Z:

j—1
=i+ 1E1Y &+ 1Y 1+ il Y gl +

p>i

+(gi 1+ D (D161 = 1&i1) + & = €G- ©
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Thus it holds that
Ek] o[l =YD eli. HE M) A& AHIK+1]. 4)

i=0;=0

Hence, we obtain the following lemma.
Lemma 2.1. The following equality holds

[E[K], n[/]] = E[K] o l1] — (— D)KL o g2).

2.2.2. Dpoy(A)

For a graded algebra over a fieldk, we putCpoy(A’) = @®Hom(A® AN[—1 + 1].
The following operations on th€poly are closed for th@®yoly.

The grading of the vector space Hom®, A") is defined as follows: the degree of
an elemen¥ € Hom(A® A)isrif ¢ = 0 orif it holds thatj¥ (x1 ® - -- ® x;)| —
> |xi| = r for any homogeneous elements 4f. For the elementt = w[-I + 1] €
Hom(A®, A)[—I + 1], we put|®|; = |¥| and |®|p := [ — 1. We put that|®| =
@)1+ P2

For any® € Hom(A®", A)[—r + 1] with |@|, = s, which we call homogeneous, and
for any homogeneous element € A[1], we put as follows:

D1 ®---®ay) i= (~HXOTFVEHTIPIG [ 1)(aq[-1] @ - - @ a, [-1][L],

where the signature is determined by the dg-composition rule. For any homogeneous ele-
ments® € Cpoly anda; € A[1], we put as follows:

. i—1
Fi (@) @® - ®a) == o . .e0@e )o@ (5)
where the signature is obtained as the dg-symmetric signature of the transformation
PRV Qar>a1Q® - QPRaA® - -Qa.

We put Fj(®) = Zile,"(dﬁ). Hence, we obtain the homomorphistAis= (F;) and
F' = (F}) from the Hom(A®", A)[—r + 1] to the[],,Hom(A®™, A®m—r+1)[—r 4 1]. We
denote byr the natural projection

[ [Hom(a®™, A®™="+h[—r + 1] - Hom(A®", A)[-r + 1].

m

We have thatr o F = id. We define the compositio®1 o @2 as®q o 5 ;= w(F(P1) o
F(®7)), where the second denotes the composition of the morphisms. Also, we define
that®, o; &2 = 7 (F(P1) o FL(P))).

Usually, the differential graded Lie algebra structure of@ggy is given by the Gersten-
haber bracket, i.e., for two homogeneous eleméntand @,, the Gerstenhaber bracket
[,1 is defined as follows:

(@1, D3] = P10 Py — (—1)*1H P2y 0 ;. (6)



82 T. Mochizuki/Journal of Geometry and Physics 41 (2002) 73-113

The differentiald is defined asi(x) = [m, x]’, wherem denotes the multiplicatiod ®
A — A. In this case, the Maurer—Cartan solution induces ajomgaideformation of
the associative structure of the A, i.e., the formal deformatiod of the differential of
Cpoly(A). Also, itinduces am .-deformation of the associative differential graded algebra
Cpoly(A)[—1] as follows: we puti := n + m. We have the decompositigh = ) u;,
where theu; belongs to the Hort®!, A°). Consider elements € Hom(A®"i | A)[—r; +1]
with |#;]1 = s;, which we call homogeneous. We put for homogeneous elergrabthe
A[1]

O0n® - @4)@1® - Qap)

=Y et} {ap) kghar ® -+ tiag, ® -+ @ Ak pr 1) ® -+

where we put ({1}, {a,}, (k,}) = (—1) Zi=1(6DX, ) \which is the dg-symmetric sig-

nature of the transformation® - - - @4, ®a1Q - Ray > A1 Q- (i RaA; Q-+ ) Q-+ -.
Thus, we obtain the homomorphism

0: (%) Hom(A®”', A) — HHom (A®m’ A®(mfz(r,-fl))) )
i=1

m
Definef; : ®' Cpoly — Cpoly for 1 > 2 as
M@ - @) =a(F(u)o (DN Q- Q1))).

We putii; = ad(i).
We obtain the following lemma, which may be well known, by a direct calculation.

Lemma2.2. It holds thatii o i = 0.
Proof. We have the following equality:
fop(t1®:- ®@1)(a1® - @ am)
=popu(dn® - @)(a1® - ®an))
i (CEVE e @ Gom @ @) @@ @a)
i—1
+2 (Y EDE TN @ (o @ B ) (@@ Ban). (7

Hence we are done. O

We change the bracket @1y (A) slightly as follows. For homogeneous elemedjse
Cpoly the changed bracket]/is defined as follows:

[@1, @7] 1= (—1)|P121%22[p,, ;] (8)

We putd15®, = (—1)P121%212¢p, o .
From the Maurer—Cartan solution for this differential graded Lie algebra structure, we
obtain the following structure which we call,_-structure. We have the elemgnt= ) w;
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as above. Then, we define the morphigth > 1) as follows:
Mt ®--@)(1® - ® fm)

=3 7(F()o@On® - @WNf1Q---® fm) (=2),
pr=adw) (=1,

where we put as follows:
! !
8= ltila [ D ltjla+m—1]+1 (mod2.
i=1 Jj=i
The following lemma can be shown by a direct calculation.
Lemma 2.3. We have thafi o & = 0.

Proof. We obtain the following equality by direct calculation:

fop(t1® - @) (a1® - ® am)

=p Y, (DPuom@ne - @una®: - Qan)
a+b=m-=Y_ |ti|2

+ Y (P EnE T iy g

a+b=m=Y_ |ti|2

®tioua®---®t1)(01®~-~®am)

- Y (T ey

a+b=m—=Y_ |ti|2
®tioﬂa®"'®tl)(al®"'®am)’ (9)

where we put

p-1 i
o = Z ltpl2 Z l7q12 + (m - Z |tp|2) Z"P' +1 (mod2.
p=1
Hence we are done. 0

2.3. Configuration spaces and its variation

Kontsevich introduced the configuration spacgs, and C, to prove the Formality
theorem. As a variation, we consider the following spaxég,n and X! : note the nat-

ural isomorphismp : CR, o ~ A", where A'~! denotes the interior of the standard

(I—1)-simplex. We representthe mamsp(x) = (po(x) =0, ..., p;(x) = 1). We obtain
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the mapy : Al ~ A" x Rog — Ci110as
Y(x, 1) = (pi(x) +v—1).

We put)o(l = Cpm X410 (ZZ). It has the natural orientation. We denote the closure of the

n,m

X!, intheC, » by X!, . Asis easily seen, we have the equality difjy,, = 2n+m—2—1.
Similarly, we putX}, = C, x¢,., A'~%, wherea!™ ~ C} | ¢ ;11 and denote its closure

in the C,, by X.. We have that dinX, = 2n — 3 — I. We denote the closure of ~1 in the
C_‘[Jrl by D;. We haVGXL,m = én,m X a0 Dy.

The configuration spaceén,m have the natural stratifications defined by Kontsevich.
They induce those on the; and the)_(fhm by restriction. We describe them in the following.
Observe that thﬁfq’m and theD; are locally polyhedron for an appropriate coordinate.

2.3.1. The stratification of,
Consider the following datél’, «, ¢, 8) with the following conditions:

e T is an oriented tree with the unique root vertex and the unique root edge. We have the
natural order on the sét; of the vertices ofl" (take the root point to be the minimal
point), and the natural order on the #&t of the edges of th& (take the edge starting
at the root point to be the minimal point).

e ¢ is the mapEr — {1, 2} such that it holds thap(e) > ¢(¢') if e < ¢’. We denote
by Stu), for any vertexu, the set of edges starting fromu. We put St(u) = {e €
Stw)|¢(e) = i}.

SinceT is an oriented rooted tree, any vertegxcept the root has the unique incoming
edgee(u). Thuse gives the functiorp : Vy — {1, 2} by the correspondenai(u) =
¢ (e(u)), ¢(root) = 2.

e « is the decomposition Eff') = En(T) u Enp(T) and the ordering of each set, where
En(T) denotes the set of maximal edgesdenotes the numbering of HIT).

e 8 = (B(n)), whereB(u) is an ordering of St(u). Note thats gives the lexicographic
order to EnT).

o If |St(u)| = 1, then it holds that $t) = St;(u), and¢ (e) = 2 for the edge ending at

e We assume that two orders onZ#) given bya andg coincide.

Definition 2.1. We call such data a numbered oriented 2-tree of {ype:).

Let (T, o, ¢, B) be a numbered oriented 2-tree, dhdbe an oriented tree obtained by
collapsinganedge: u — v of T whichis not maximal. We denote laythe vertex obtained
by collapsing the edge Then the dat&7”’, o/, ¢’, B’) is induced from th&T, «, ¢, B) as
follows: we have the natural isomorphism@&hH ~ En(T’) hencex inducesx’. Since, we
have the inclusiorE7: C E7, the mapy’ is obtained as the restriction. As is easily seen,
¢’ satisfies the condition. ip(e) = 1, then Si(ir) = Str(u). HenceB (1) inducesp’ (i).
Wheng(e) = 2, we have that $ti) = (Sto(u) — {e}) U Sto(v). The orders3(u), B(v)
and the condition “for edgas(# ¢) € Sty(u), ¢’ € St(v), ¢’ <" ifandonlyife’ < e”
determine the unique ordgf(iz) on the St(iz). Hence the collectiop of orders induceg’.
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Similarly, ifthe T’ is obtained by collapsing some eddes of theT, adataT, «, ¢, B)
induces the datél”’, o', ¢', B).
There is the natural ordering of the set

Sum ={(T,a,¢, B)lasabove #ENT) = m, #Em(T) = n}.

For two oriented 2-tree whose base trees coincide, we ddfing ¢, 8) < (T’, o/, ¢’, 8)
ifa=a',¢ <¢' onENT),¢ = ¢’ on E(T) — ENn(T), and the natural maps Bt:, ¢') —
Sty (u, ¢) are order preserving for all vertices In general, we defin€T, «, ¢, B) <
(T',o', ¢, B) if T is obtained by collapsing some eddes} of 7, and if it holds that
(T',a&,¢,) < (I',,¢,8), where (T',a,¢,p) is the data induced by the
(T,a,¢,B).

_ Take an oriented 2-tred’, «, ¢, B) of type(n, m). Then we have the Subs€tr «.4.5) C
Cp.m- The seilC(r 4 4,p) is isomorphic to the following product:

Crg) = l_[ Cast (v) #Sb(v) X 1_[ Cst )
veln(T) veln(T)
$(e(v))=2 ¢le(v)=1

wheree(u) denotes the edge endingfor any vertexu. If we have that(T, «, ¢, B) <
(T',d', ¢, B'), then the closure of (7 o ¢,y CONtains the seC(r«.¢,5). We have that
CTap.p) NCrapr.py =0, (T, 0, ) # (T, ', ¢, B)).

The collection{C(7,«,¢,4)} gives a stratification of théngm.

2.3.2. The stratification ab;

The stratification ofC; 1 ¢ is inherited by theD;, i.e., for any numbered oriented 2-tree
T with type (I + 1, 0), we putDy7 := D; N Cr. Asis easily seen, iDit # ¢, then it holds
that Stu) = Sty(u) or St(u) = Sty(u) for any inner vertex: of 7. For suchT, we put
€(u) = i if St(u) = St;(u). The Dyt is isomorphic to the following product:

Dt ~ 1—[ Z#St(u)—ZX 1_[ E#St(u)—l_ (10)
ueln(T) ueln(T)
eu)=¢u) e(u)<p(u)

We obtain the following equality:

dmDr= Y @#Stw) -2+ Y (#Stu) —1). (11)
ueln(T) uein(T)
e(u)<p(u) e(w)>p(u)

In particular, the codimension 1 strata correspond to the following type of oriented 2-trees:

e The set of inner vertices @ is In(T) = {root, u}. For all non-minimal edges it holds
that¢ (e¢) = 1 and thatp (e(root)) = 2. The corresponding stratum is the following:

DN Cr >~ A1 x A2

wherelp = #St(root), /1 = #St(u) and it holds thato + /1 = [ + 1. This type can be
seen as the boundary of thilg ;11 x R.
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e Thesetofinnervertices @fisIn(T) = {root, uy, ..., u;}. There are the edgesroet u
connecting root and. We have that $toot) = Sty(root) and that Stu;) = Sty (). The
corresponding stratum is the following:

k
~ o ly—1
Dt >~ Co o X HA“ )

a=1

wherelp = #St(root), I, = #St(uy) and it holds thad " /; =1 + k.

2.3.3. The stratification of’, ,,

The stratification otXf,,m is obtained from that ofn,m. Hence, we obtain the following
proposition.

Proposition 2.1. The list of the boundary strata with codimensibrf the X/, , is the
following type of oriente@-trees(T, «, ¢, B):

1. The setof the inner verticesf{i®ot, u}. We have thabt(u) = Sty (1), and thaty (u) = 1.
By the numbering, the set of the end points of the edge in 8t6:) contains at most
one element of the sét, ..., [}.

2. The set of the inner vertices({i®ot, u}. We have thap (1) = 2. By the numbering, the
set of the end points of the edge in tt&t;(u) is contained in the set
{1+1,....n}

3. The set of inner vertices {goot, u}. We have thaSt(u) = St;(u), and thate (v) = 1.
By the numbering, the set of the end points of the edge in 8tgu) contains at least
two elements of the sft, .. ., [}.

4. The set of inner vertices {soot, u1, ..., u;}. We have thap (root — u;) = 2. For the
edge e ending at an eleménte {1,2,...,1} C En(T)y, it holds that¢(e) = 1ife
starts at the root and thap(¢) = 2 if e starts at the;.

2.4. [-Admissible graphd/ and the weight
In the following, we can use the notation in Kontsevich’s paper [10].

Definition 2.2. Let I be an admissible graph. Note that admissibility implies that there is
no edge ending at the start vertex. We denote the set of the first vertices (resp. the second
vertices) ofl" by V} (resp.V3).
We say that'” is of type(n, m, ¢) if #V}: = n, #VZ = m, #E = e.
Forl =0,1,..., an/-admissible grapli” is an admissible graph of tyge, m, ¢) with
the decompositio} = }’1 U V-2, such that:

o VE =1, . i+, @vEi =141,
o for any pair(i, j) C V1! there are no edges connectingnd ;.
We denote the set dgfadmissible graph of typé:, m,2n +m — 2 — 1 — k) by G@’in

If e = 20 +m — 2 — 1, we denote it also by, ,,. An usual admissible graph is called
#-admissible graph.
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Let I" be an-admissible graph of type:, m, 2n +m — 2 — ). We define the linear map
Ur of the ®" Tyoiy[1] to the Dpoiy[1 + I]. Consider elements

1 .
Vi = mZangUi, Wp))vi, vy € Ak‘“Tpong,
Ji

where J; runs through the set of ordered subset{df..., p} with #J; = k; + 1, and
where we denot® e, v, by v;,. The mapl : Er — {1,..., p} corresponds to the term
[Tvi.5 - vi;[—ki + 1] in the development of thgi[—k1 + 1] ® - - - ® yi[—k + 1].

Following the dg-composition rule, we defid€l/) as the signature given by the dg-
symmetric signature along the exchanges of the order

[Tris - val=ki + D& [T o2l > ([Trisvs ® £3) [P (ki + D +m]
> l_[ H Vie) Vi | ® l_[ l_[ Vi) ® f [Z(—ki +1) ~I-H1] .

ieVieeSt () jeVZeeSt())
(12)

We put fory/ = y[—k; + 1] € Tpoly(A)[1],

Ur(Nn® - Qy)(fi® - ® fm)

= 28(1) 1_[ 1_[ ViEVi | ® l_[ 1_[ vie fi| - (13)

I<{Ji} ieVieeSt(i) jeVEeeSt())

Definition 2.3. Let I" be an/-admissible graph of typ@:, m, 2n +m — 2—1). The number
W is defined as follows:

[ .
Wi _:/ wr,
Xm

wherew denotes the Kontsevich form (see [10])

. 1 1
vr = s @opmzr /\ 4
k=1 ecEr

We define the magy! = for any natural numberas follows:

n,m

U= D Wp-Ur: &" Tpoly®RDILD — Dpoiy®[L +1].
reéG ,

We puttd, := 3", Ul .. Forl = @, we puttd” := U0,
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2.5. The condition of. 5,-ness

We write down the condition for the morphigi= (U4,,) to be anl.,, morphism. For a dif-
ferential graded Lie algebig, we putC(g’) := Sym(g[1]). A morphismi/ : C(Tpoly) —
C(Dpoyy) is said to be arl«-morphism if and only it/ o (X[, 1) = (d + [, 1) o U.

We denote th@poy and theDpqy by g1 andgy, respectively.

First we consider the following morphismg [ Sym**1(g1[1]) — Syn(g1[1])[1]. For
an elemeny e gy[1], the elementy - - - 41 € Sym+1(g1[1]) is mapped as follows:

YL Vapdl > Y SOk, (yp))(_l)z;;ll|yp|
i<j
(Y1 vi—1-L-1; - Vj) ey
e ngr(/cij, yp) (=D Ll

i<j

1+ viealvil =11 v [=11A] - - v [ (14)

Hence, we have the following equalities:

1 T
Uy (E[,](Vl"'ynﬂ)) = Zngﬁj, J/p)(—l)‘y’[ UHXksialyg, (1 - yiq
i<j
Lvil=11 v (111 - - - yasD[2]. (15)
By the definition of the bracket, the formula can be rewritten as follows:
Y santeij, ) (=PI Rksia 4, (g -y - (a1
i#]
oyi[=1D[] - - vas D[] (16)
Next we consider the following morphisms:

1
shlou syt @i — o Symf(g[1)) ® Synf(g[1])
k+l=n+1

— g2[1] ® g2[1] — g2[2]. (17)

Then an elemengt; - - - y,+1 is mapped as follows:

1
VI Yarll Y i SO, (V) Vo1 -+ Vor ® Vorus - Yoysn
k+l=n+1 ’ .(TEE,H,J_
1
= Z m Sgr(O', (Vp))uk (VUl ce J/Uk) [ Z/[l (VUk+1 . V0n+1)
k+l=n+1"""o0€X,11
k,>1
1 1
= —_— _ NU Yoy Ve -1
=3 Y T X Sane () (—DH O
k+Il=n+1 oeX, 1
k,>1

X [uk (VUl e yok)[_l]v ul (J/akH e VaHl)[—l]][z] . (18)



T. Mochizuki/ Journal of Geometry and Physics 41 (2002) 73-113 89

We put the differential oDpoly as follows:dx = [m, x] = —(—1)*I[x, m]. Then we have
d(x[1]) = —[m, x][1] = (—=D![x, m][1]. Hence(d + 3[.1) oU (y1 - - ya+1) is described
as follows:

1 1 o)
> Z i sgn(o, (yp))(—l)lu"(y"l Yo )[=1]I
ktl=n+1"" 0€Zyi1
X[Uk(yal e Vak)[_l]s ul (y0k+1 e V(Tn+1)[_1]][2] . (19)
By the definition of the brackets (6) and (8), we can rewrite it as follows:
1
Yo o D sgro. (D) (~ DS e
k+l=n+1""o0eX,1
k,1>0
X Ui (Vor Yo )l =1 o Ut (Vo1 * Vo, ) [—1DI2], (20)

where we put = Uk (Vo = Yo ) [=Ul2, s = U Vo1 -+ Vou ) [—1l2-
Therefore the condition fd# to be L is the following:

Formula(16) = Formula(20).

3. Thecompatibility of the cup products

Let I" be ar/-admissible graph of typ@: + 1, m, 2n+m — 1—1). We rewrite the formula
obtained from the Stokes theorem for the integration ofthg on theX’

n+1l,m’
o= [  dwp=Y
T

1
Xn+1,m

;e
ot Xn+l.m

whereT runs through the list in the previous section.
3.1. The types which contribute non-trivially

By the same discussion as that in [10], using the lemma of Kontsevich, we obtain the
following list of the oriented 2-tree® = (T, «, ¢, B) of type (rn, m) such thatfaTX/

n+lm
w - does not vanish: :
Type I, j) T is of type | such that we have #@h = 1 and thatx (u)(St(w)) = {i, j}.
Type llf) T is of type Il such thag(root)(root — u) =i.

Type lli(i) T is of type Ill such that we have #&@t)=2 and thatx (u)(St(u))={i, i + 1}.
Type IV T is of type IV.

We describe the list of the graphs obtained in the cases above.

Proposition 3.1. The list of the graphs which must be considered is the following:

I(i, j) I': an l-admissible graph of typ@:, m, 2n + m — 2 — [) obtained by collapsing the
edgei — j to a point ij.
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[1(i) Iy and I'1: they satisfy the following

e [pis an l-admissible graph of typ@o, mo, 2n0 + mo — 2 — 1).

e I is a0-admissible graph of typé:1, m1, 2n1 + m1 — 2).

e I is a subgraph of” whose second vertices afig . .., i +my — 1}. I is obtained
by collapsingl to a point

We describe the situation d% =; I7.

(i) I': An(l —1)-admissible graph of type:, m, 2n +m — 1—1) obtained by collapsing
two points to a point from two verticés: + 1 of the type(1, 1).

IV Ipand (i, = 1,...,k), wherelp is a 0-admissible graph of typéig, mo, 2n¢ +
mg — 2). I, is l,-graph of type(ny, my, 2nq + my — 2 — 1,). Moreover, it holds that
Yng=n+1Y my=m+kd (y+1)=1+1

We describe the situation d =, I.

3.2. The contributions

Let M be a manifold with the boundaf/. We determine the orientation of the boundary
as follows:

(The orientation ofM/) = (The inner normal vectdrx (The orientation obM).

Let y; be homogeneous elements Tky[1] and f; homogeneous elements Af[1] in
the following. If homogeneouy; = (3 yivr)[—ki + 1] € Akitlg, we put|y|y =
“(vivn), lvila = —ki + 1. It holds thaly;| = |y;[1 + |yi|2 by definition.

In the following, we will rewrite the following by using Stokes formula:

Z </ 1 wf) U ® -+ @ Ynr1).
- T ar X

s n+lm
FEGnJrl,m

Note that thPX,ﬁ,m can be regarded as polyhedron locally, and hence we can use the Stokes

formula. In the following, we also denote the components of the boundary dtfmgm

by thedr X', . if the T and thel" give the graph’.

Definition 3.1. Let V be a graded vector space. Consider homogeneous elements.
In the following, the transition fromy[l1] ® - - - @ a[ln] 10 a6 ) [lo )] ® - - - ® Ao () [l ()]
means that the composition of the following exchange of the order:

a[lhl] ® - Qanlln]l » a1 Q@ - - @ an, I:le:l = a1 @ - ® don) I:ZIP]

= de)llo@] ® - ® aomllom]- (21)

Notice that we do not replace the order of the shift.

We use the following lemma to see the signatures, which can be shown by a direct
calculation.
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Lemma 3.1. The dg-symmetric signaturéo, (a;[l;])) of the transition above is the fol-
lowing in theZ/2Z:

t(o, (ai[1;])) :=sgn(o, (ai[l;]))" — sgn(o, (la;i[li]]2))’
= asgnio, (a;[1;]))" — asgnio, (la;[li]12)) .

3.2.1. Cased, j)

Let I" be an/-admissible graph of typé:, m, 2n +m — 2 —1). We denote by (I, i, j)
the set ofi-admissible graphg’ of type (n + 1, m, 2n + m — 1 — [) with the following
conditions:

e The edge — j existsfori < j.
e The graphl” is obtained from thé™ by collapsing the edge— ; to the vertedj, whose
number is.

e We denote the numbering of the first vertices of they n,i.e.,nr : V}—X{l ..... nj.
Then we have the following:

np(p)=nr(p) if np(p) <j, ngp(p)=nr(p)+1 if np(p) > j,

under the isomorphisrifl ~ V.

e The ordering of the $p, I')issameas thatofthe@t, I") if n(p) # i, j. The ordering
ofthe Sti, I') — {i — j} and the Sgj, I') is the restriction of that of the 8}).

Then it holds that
(—DI il s e Ur (1 @ -+ @ (i[—1] @ Y [—1D[A] @ - - @ Yur1)

1
= #50) D asginUr (1 ® - @ Yasrd), (22)

reS(r,i,j)

wheret denotes the permutation of the order
(i = jyuStij; I') — St@i) U St(j).

The term #Sti) ~! appears because of the ambiguity of the order of the edgej in St(i).
On the other hand, we have the equality

/a o N

n+1,m eeElz

= / sgriki, (1ypl2)) - asgir) - (~DZr=i-1"R g, A N dg,
9 1

r X, 1m ecEr

= (=D Zr=i1 77D 2y / S9N, (Iypl2)) - asgriz) N\ débe. (23)

n, ecEr

Hence, we obtain the following equality:

Wr = (—1)2r=i-1"l2asgric)sgnici, (1y,12))

#SHi)HSH())! / _
(#SH) +#SWj) — D! Sy xt
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Therefore, we obtain the following equality:

(=D Xzl i =1sgnii - (y,)) Wi
Urn®--- @ i[-1ey;[-1D[1] ® - ® yu+1)

(#SH(i) — DI#SH(j)!
el | (#SID) +#SU)) - D) (farxg.mwf) Ur1® - ®ary). (24)

As is easily seen, the number of graphsuch that” € S(I', i, j) is (#St(i) + #St(j) —
D!/ #SH(@) — D)#St(j)!. Hence, we have the following formula:

FeS(ri,j

Z (_1)Zk§i—1|yk‘+|Vf[_1]‘sgr(Kij, (vp)) - Wr

recG. ,
Ur(n®@--- @ (i[—1 e y;[-1ID[] ® - - - ® yu+1)

= ) > (f . wr)'ur(7/1®~-~®yn+1), (25)
8Txn-%—l,m

TPl DFeGy (=)

WhereGﬁ;_lk1 (i — J) isthe set of graphs iGQilm such that it contains the edge> ;.
The case > j is similar.

3.2.2. Case i)

Let Iy be anl-admissible graph of typéng, mg, 2ng + mg — 2 — 1) and I'; be an
#-admissible graph of typé:1, m1, 2n1 + m1 — 2). We have the equalitiesy + n1 =
n+1,mo+ mp =m+ 1. We denote bys (1, I'y, i) the set of unnumberddadmissible
graph such that it is obtained from the gragfysand Iy by removing the vertex of the
second type and by connecting the edges in the $gt $b the vertices of the graphy.
The terminology “unnumbered” means thiatis not given the numbering of the set of the
vertices of(1, 2)-type. Notice tha¥ = Vp,, U V. For any vertexp of the graphl”, the
ordering of the set $p; I") are determined by that of the(®t; I'), wherep’ denotes the
corresponding vertex in the.

For any vertex € V}o U V}l, we denote the; on the vertex by n,.

Lemma 3.2. We have the following equality

51 . [(G, (Vp))uro ( & Tlv) (f1® s
vEVI:LO

®Z/{I"1 ( ® nv) [_1](fl & fi+m1—1) R fm)
veV}l

= Z U1 Q@ @ V+1®@ V42 Q@ -+ @ Vut1), (26)
reSIo,I.i)
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where we put as follows

uFl( by nv> [—1]
UGVrl

and where we give the numbering of the B’%tz by the{y,}, i.e., the number of the v
equals p if they, is on the v, and where is the permutation from thgy, } to the{n,|v €
Vidu{nulv € Vi)

i—-1
5 = Y g+ D Imli+ G = Dom+ 1) € Z/2Z,

1
ve VF0

Proof. We have to see the dg-symmetric signature of the following transition:

i+m1—1
®@ M <®fq> ® 77v®< ® fq) Z|7lv|2—ml+1 Q-

veVi q=1 veV} q=i 1
To UEVF1

~ (rio(84))| X ime-maf. 27)

1
veVr1

We have the equalit[vev} Inylo—m1+1=2n14+m1—2—2n1—m1+1= —1. Hence
1
the dg-symmetric signature is as follows:

i—-1 i—-1
Dl Y Ml =G =D D Il D I+ Y 1fgla=6" (28)

1 1 1
vEVr1 veVI-1 UEVFO
Hence we are done. O

On the other hand, we must determine the signature of the integral, |e the orien-
tation of the boundary. We see the coordinate transformation ardgpngr X' as

n+lm
follows:

(Z17 M Zn+l; pla L] pm) ~ (Zla ] Zl+17 Z(TH,za ceey Z(fno; pl5 ceey plfl

. . m—(i+m1—1))m

Pi+mqs> -5 Pms Zo‘no+11 ey Zo‘n+11 Di, Pi+1, ..+, pi+m1—l) X (_1)( @ 1=Dimy
~(T,20, oo UL Zopgps - o5 Zougs PLo - s Pi=1s Pitmys - - s Pm)

. —(imy—1
X(Zano+1’ ey Z0n+l’ Pi, Pi+1, .-, pi+m2—1) X (_1)("1 (imy ))mlv

wherer denotes the coordinate of the ‘center point'(ef, .. ... Zo,415 Pis Pi+1: - - -
Pi+m,—1). Furthermore, it is equivalent to the following orlentation:

~ (innernormalzy, ..., Zi+1, Zojsps - - - Z04gs PLs - - -5 Pi—1s Pis Pidmys - -+ Pm)

X(Zoyg41s + + s Zoygns Pis - -+ Pidmp—1) X 82,

where we put, = (m1+ 1)(mo+ 1) + (i — D(my+ 1) +mo +1.
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Hence, we obtain the following equality:

3 Sgr(O', (y])))WFOWF]_ : U}O ( ®1 T)v) [_l - 1] S Z/{Iql ( ®l ﬂv) [_1]

ve VF0 ve VFl

1 /
:Zm/a X wr -Up(y1 ® -+ ® ¥y y1)s (29)
T g=T

1
n+1,m

where we put as follows:

§'=="Inla+mo+1+(mi+imo+1)

1
veVFO

Upo( ®1 nv) [ —1]|+14+14 o+ D(my+1).

veVr0

The numbering oni’Z is given as above. Notice that the permutatioa X, _; corresponds
to the numbering of the séth2. Notice also that the numberings of the graphsand I';

do not effect the right-handrside. Therefore, we arrived at the following equality:

1
(no—1—21)!ny!

X Y SYNO, (1)U o (V1 ® - ® Y141 ® Yoy, ® -+ ® Voo )1 — 1]

ogeX,

O nl,ml()/o,loﬂ - yUnJr]_)[_l]

- Z Z / . wr U1 ® -+ @ Vur1)- (30)
T.ypell) feght, | O Xy am

3.2.3. Case llK)

Let I" be an(l — 1)-admissible graph of type:, m, 2n +m — 1 —1[). Assume that < [.
We denote by’ (I, i) the set of ari-admissible graphs of type(n+1, m, 2n —m —1—1)
with the following conditions:

e The graphl” is obtained from the™ by collapsing two verticesandi + 1 to one edge
i, whose number is.

e The numbering of thé/s isnp(p) = nr(p) if nr(p) < i,np(p) = nr(p) +1if
nr(p) > i under the isomorphismi} — {i} ~ Vll —{i,i +1}.

e The ordering of the set Gt and Sti + 1) are the restrictions of that of the St The
orderings of the Sp) for any verticep # i, i + 1 are inherited from the corresponding
vertices of thel".
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We have the following equality:

Ur(n®: @ (ri[—2] A vi4a[-2D[2] ® - - - ® yn+1)
= > SgNT) Up(r1® - ® Yay), (31)
FeGn+1
wherer is the permutation of the order@t — St(i) U St(i + 1). Moreover, we obtain the
following equality:
#SH()#SHG + 1)!
#St()!

—Zf wir - Ur(y1® - @ Yus1)- (32)

ar Xn+l m

D'Wr - Ur(ni® -+ @ i[—2] A yisa[-2D[2] ® - - - ® Ynr1)

As is easily seen, the number of grapfissuch that the™ is contained in thes’(I", i) is
#SH(i)! /#S1) #SHI + 1)!. Hence, we arrive at the following equality:

- Y EYTWrUr(n® - © Gil—2 A vipal-2D[2 ® - ® Yay1)
reG!

n,m

= ) / Wi Up(y1® -+ ® Yay1). (33)
dTX

T,type |||(l) )L+lm

3.2.4. Case IV
In this case, the signature is slightly complicated. We give the proof of the case needed
whenA = C®(R%). Then we state the result in the general case:

The casé = 0. Similar to case Il.
The casé > 1. We only write the results in the casg = 2. It is divided into three cases:

1. We consider the situation corresponding to the following tree:

root

________

where the number is the value @froot). Let Iy be a 0-admissible graph of type
(no, 2, 2np), and Iy (e = 1, 2) bel,-admissible graphs of typ@y, my, 2ny + my —
2—1y).Wehaved ny, =n+1,mi+my=mandl, #@fora =1,2.

We denote byS (I, I't, I») the set of unnumberedadmissible graphs obtained
from I, by removing the vertices,2 € V2 and connecting edges in (3} and

St(2) to the vertices ofly, I'>. The orderlngs of stars are inherited from those
of I',.
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We have the following equality:

81 -1(o, (vp)) X Z/[1"0[_1] < 8} 77v> Ur, @ m|[-h—-1U(A® - ® fy)
velp

veVr1

U, ® My [_12_1](fm1+1®"'®fm)

vEVr2

D U® @) ([1® - ® fin). (34)
reS(Iy)

where we put as follows:

=) |nv|12|ﬁ|+2<lq+1>22 Inv|1+(m2+l)2|fz|1 (mod 2.

veV1 1= 1v€V1

The numbering of” is thought by the same way as that in case .
We must determine the signature of the integral. We pput= r; + V=11 (i =
L14+1,rn = 0,11 = 1). We consider the following coordinate transforma-

tions:
(tarlzoer?‘-'arlarl+l=17Z1+2"‘~7Z}’l;pl5"-7pm)
~ (1, 201425 =+ + 2 LOng+i+1> 0.1r1=0,r2,..., Tli+15 Zopgti2> * + - 2 LOngtng+ip+1>
Pls s Pmqs Tig425 -« - V1L, V41 = 11 ZU”0+’11+12+2’ e Zo‘,,+1;

Pimgtls -« s Pm) X (=),

We putsy = rj;41—r1 = ry+1a@ndsp = i1 —r 42 = 1—r 2. Thenitis transformed
to the following:

ryy Tii+1
|1, 20105 s 2o Olvlrl_O L, —,—— =1
( » L0425 » Long 41417 ’ 51’ 51 st >
Zon 2o,
o+H+2 no+ny+ip+1 . pP1 Pml .
s =382, 0042, g1 = 1,
s1 S1 S1 S1
. l1+lomy
Zon0+n1+12+2’ L] ZU’,H,]_’ pm1+l’ R Pm) X (_1) ’

where we put = (1/s2)(z — 1) + 1. Notice the following equality:

h+lbmi=l1+ 1+ U+ Dmi+ (mp—Dmg+2+ (mg — 1) + (ma — Dymy.
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Hence, we obtain the following:

8- sgno, YpDWraWnWr,

Xuro ® My url & N [_ll_]-](fl®®fm1)

1
veVr0 veVI-1

®U]‘2 ®1 n | [—l2— 1](fm1+l ® ® fm)

vEVF2

- Z/g e U ® @ (18 ® o), (35)
=1

~ 1
resIy) n+1lm

where we put as follows:

2 Jg—1
=\ 2ol | ® n | Ly~ 1]
\%4

q=1 \ p=1 vevr

2 q-1
Y g+ DY un | ® n |l —1]
g=1 1=0 veVi,
+(m1—1) + (m2 — D(m1) (mod2. (36)

As in case Il o corresponds to the numberingsiof and the numberings df; and the
I> do not effect the right-hand side.
Hence, we obtain the following equality:

1
w0 =T = Dingingl ij 5285910, (Vp)Wno2(Vor 12 @ -+ ® Yo p041)
o€2p—|

XU PL® - @ V41 ® Vorngr2 ® @ Voug inysiyss)
X[~ = (1 ® - ® fu) OUL .

X142 ® - @ Vi1 @ Vougingiigre @+ ® Vouyn)
x[~l2 = 1(fn 41 ® - @ fin))

=> > wr U (1@ @ ¥t )([1® -+ @ fin)- (37)

_ arx!
1,1 TR p41m
FEGnJrl.m

2. We consider the following situation:

root
1 2 —
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Let I'p be ang-admissible graph of typ@uo, 2, 2n) and 'y be an-admissible graph
of type (n1, m1, 2n1 +my — 2 —1).

We denote bys (1o, I'1, 2) the set of unnumberddadmissible graphs obtained from
the two graphdp and Iy by removing the vertex 2 VIE and connecting the edges in

St'(2) to the vertices of 1. The orderings are inherited from thoselof
We have the following equality:

U [ @ m ) | ARUR| © | (2®--® f)
0 velyp

vEV%l
= Y Un® - @yul-h-1UA® - fu), (38)
reS(p,In,2)

where we put as follows:

S1=(=1=D | 1al+ Y Il [+ 1/l Y Il = 1fil2- D Imol2

1 1 1
ve VF0 vEVF1 ve VF1

= 1Al Yl —1—1] =mi—1+ A+ DY In,| (mod2. (39)

Iy Iy

Again the numbering of" is given as in the previous cases.
We consider the following coordinate transformation:

(215 -+ -5 Zn4+15 Py oo s Pm)

= (ZUI+1’ R ZUno-¢—1+1; P1, 21, .-+, 241, ZUno+l-¢—2’ <o Zopgts
P2,y pm) (=1)

~ (T, Zopygs - oo Long+i+1° Py (21, .- 241 Long+i+20 -+ > Zopg1s
P2,y pm) (=1

> (innernormalze, . - .., Zo,g415 P P2) (21, -+, 241,
Zongsiszr -+ Zowps P2s -+ D) (=D

Then we have the following equality:

(=D'ssgno, y)WrWrln, | ® m

1
veVFO

x| AU ® ny |1 =128 ® fu)

veVr1

=) _sgno, () wr - Ur (1 ® -+ @ Yar ) (f1® -+ ® fin).

1
81‘0ﬁ1‘i Xn+l,m

(40)
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As in the previous cases, we obtain the following formula:

1

m Z 81890, (Vp)) -Ung.2(Vo 1, @ -+ ® VJHH,,O)

ogeX,

x(f1 ®U,l11,m_l()/1 Q- OV+1® Y0424 ® Vo,,Jrl)(fZ ® - ® fm))
:Z Z fwf~Uf(Vl®"'®Vn+l)» (41)
T

= 1,1
FeGn+1,m

where we put as follows:

81 =+ Dlthno2(Vor2 ® *++ ® Vorsa ) [ + 11l - Ungm-1(r2 ® - -
®Vi+1 ® J/U[+2+n0 - VG,,+1)[_1 - 1]| + m1 (mOd 3 (42)

. We consider the following situation:

root R

We consider the following coordinate transformations:

(1, -+ -5 2041, P1y - -5 Pm)
= (mezs te Zano+l+1; PmZ1, -5 241, Longti+2r * Zopt1s
Ploe ey pm—t) (=17
~ (T, L0425 -+ ZUI:0+I+1; Pm) (21, .- 241, Lopgti+2r * Zop41
Ploe oy pm—t) (=1

>~ (innernormalze,,,, - - s 20,0415 P1s Pm) (2L, -5 2041,
. —2+41
Z0n0+l+2’ L] ZO',H,]_’ pls AR ] pm—l) (_1)m + .
We obtain the following formula in this case:

1

=TT 2 S9N () U 2(epyp ®

0€X,|
®VUZ+1+n0)(u;l11,m—l(Vl Q- QV+1® Yo 424nq -
®VJ,,+1)(fl ® ® fin-1) ® f)
=Z Z /wf'Uf(7/1®'~®)/n+1)(f1®"-®fm), (43)
T

FGG}£+1,m
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where we put as follows:

=+ 1)|UFO 2(Va(l+2) ® Vo(l+1+no))[ 1]| +m (mOd 3 (44)

The general casélNe give only the result on the difference of the signature. First we see
the following lemma. We put; = 3=, _inp.

Lemma 3.3. We consider the following transition

-1 Ji+m—1
® m® ® fo]] ® m® ® f
UEV}?O = =1 veVr[ q=J
Jr+1—1
N ml-m+1le @ f |~ ®nv®®f, (45)
1 q=Jji+m; veV
UGVT}

Then the dg-symmetric signature along the transition is as follows

k Mg jq_l jq_l
> (Zm@qﬁm) Y Ul - Z (Zm(”q 1+1)|2> Y fpl2+ 1)
p=1 p=1

q=1 gq=1
Mg—1 Jg—1

k ng
+y (Zh/a(nql)lz —mg + 1) A ewh+ Z | fpla
g=1 \r=1 s=1 p=1

/q_l Jq_l

kK /ng
zZ(ZIVomq 1+1)|1> Zlpr—Z( mp + 1) Z|fp|1
=1

nql

k
Zz +D | Dol | +100)" (46)
qg=1 s=1

On the other hand, we obtain the following lemma.
Lemma 3.4. The difference of the signature betweﬁerp and fa wp s

ki-1

DD i —DEU+D+ D mi — DG — D

i=1j=0
i—1

+k + Z(m, — DY (mj — 1) + 9o, (ly,l2) .

i=1 j=0

Proof. It can be shown by the comparison of the orientations as in the previous cakes.
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Hence the total difference of the signature is the following.ji2Z:

k jq*l ng k ’_lq—l
S 18 <Z|ya<ﬁ,,_l+,>|1 —mg + 1) Y g+ DD ol ++1

q=1p=1 =1 q=1 s=1
k i—1
+> (mi =D (mj — 1)+ k+5sgno. yp) (mod2. (47)
i=1 j=0

It can be rewritten as follows:

k Jjg—1 k g—1
DD Il ur, ( ® m) [~ — 1]+ ) U+ D) |ur, ( ® nu) [—1 — 1]‘
a=1p=1 vely a=1 =0 vel;
k i—1
+> (mi = DY (mj — 1) +k+5sgno. y,) (mod2. (48)
i=1 j=0

3.3. Formality theorem

In the casé = 0, the contribution of types | and Il appears, and we obtain the following
equality:

0= Z(_1)Iw[—1]|+st;—1|7’k|sgr(/<ij, ()/p))
i<j
XU ® - ® (i[-1 o 7j[1D[L ® - - ® yu+1)
_i_z(_l)lyj[*l]Hsti—ka| sgnxii, (¥p))

i<j
XU ® -+ @ (vj[-1] e [-1D[U ® - ® yu11)
Z 1
notmoni1 710~ 1)lng!

mo+mi=m+1
0 e p—
x Z Sgr(U, (yp))(_1)(m0+1)(m1+1)+uno_mo(V1®V02® ®Van0)[ 1]|

oeX,
Xur?o'mo @Y, @ ® yﬂno)[_l] oj u;?l,m1(7/on0+1 ® - ® Vo, . )[—1]
oyt
I(ny — 1)!
no+ni=n+1 (no)!(n1 — 1!

mo+mi=m+1

x Y sgn@, () (—1)

oex,

XU o (Voz ® -+ ® Voug1) Oi U (1 ® Youy ® *+* ® Vo, )[—1]. (49)

(m1+1)(mo+1)+|u,?0,,,,0(y02®~~®ya”0+l)l
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It can be rewritten as follows:

0= ()M HF S sgnicy, () UL @ ® (vi 0 7)) @ -+ @ Y1)

i<j

+Y (s sgnig, (DU ® - @ (v 0 ¥i) @ -+ ® Yuga)

i<j
Z :
(no)!(n1)!

not+ni=n+1
mo+m1=m+1

0
3 S (I )

o€Xy 11
Xu}’loo,mo(yo'l ® . e ® yo'”o) O ur(l)l,ml(yon0+l ® tee ® )/gnH). (50)
The equality shows the ..-property of the morphistiy = 14/° as is seen in Section 2.5.

3.4. Cup products

Take an element € Tpoy[1] such that the shifte[-1] € Tpoly is a solution of the
Maurer—Cartan equation fdbmy(]Rd), which gives a solutiofr[ —1] of the Maurer—Cartan
equation for thero|y(Rd), we put as follows:

_ "o
o= Z:lal/ln(oe S ).
We denote the multiplication of th€>(R¢) by u. We putii = w + @. We have the
decompositioni = Y fi,.
The solutiona gives the formal deformation of the differential graded Lie algebra
Tpoyl[#]] by putting the differential agix = f[a, x]. The complex(Tpoy[—1[[¢]], d)
is the differential graded Lie algebra with the cup product. The solufiagives the
Ax-deformation of the associativ@poy[—1][[]] by putting the differentials/ + «, i.e.,
dx = [, x][1]. We denote them byTpoly)w, (Dpoly)a, respectively.
We define the morphisi, %, : @'t 1Tpoy[1] — Dpoly[L + /] as follows:

U,i’,%()/l Q- Qyi41) = Uf,,m(yl Q- ®Y+1Qa®@--- ).
We define the morphisif, i : Tpoly[1] — Dpoly[1][[ ¢]] as follows:

n—1

1t ——
TU(y) = Z(n — 1)!14,?:,%@ @A)

Moreover, we define the morphisfit/-* : & 1Ty [1] — Dpoy[1 + /][ 1] as follows:

tn—l—l
TU (N ®- - ®yi41) = Zmz/{r]l’,%(m ® - ® Yit1)-

n,m

We haveT, U = TU%. We putx; = y;[—2].
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The contribution of type | to the integrél. . dwp is summed as follows:
n+lm

(n = D(=DZr= Myl (1 @ - @ (@[ -1] o y[-1DIA ® - ® y141)[1]
+(1 = D(=D 2= (1 @ - @ ([ —1] @ a[1D[1]
® - @ y+1)[1]. (51)
We have the following equality:
(=@ @ (—al-11 e -1+ (Dt [-1)
el -1 ® - ® 51 ) [1]
= (X vZ e @ (lol-11 nl-1D ® -+ ® yisa) [1]
=t ® - ® ). (52)
Thus we obtain the following as the contribution of type I:
(n = DUt A1 ® -+ ® x141)).
The contribution of type Ill is the following:
Y DU ® - ® il-2 Avial-2D[2] ® - ® vl
We rewrite it as follows:
U T AL ® - ® X141)).
The contribution of type Il can be written as follows:
3 (R =DV et Do D4+ Usm (18- [ 1D)
(no—1—2D'ny!
X Uty (1 ® -+ @ Y[ =1 = 1] o finy [-1D[2 +1]. (53)
The contribution of type IV can be written as follows:
3 Uk 8- 0 (F (fing)

k
o +k1) Han!Hp:l(np -1, - D!
P =

o[](u,llll’ff,,l()/l ® - @v[-h1-1®---
UL, (i, ® -+ ® yipD) [~k — I + 2. (54)

where we put as follows:

k q—1
8= U+ (> Un( ® |nv|) [—1, +1]
g=1 s=0 veVllS

k i—-1
+Y mi = DY (mj—1)+k (mod2.

i=1 j=0
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Thus we obtain the following equality:

TU(d(x1® - ® x141) — TU M (A1 ® - ® x141)
—ad()(TU (X1 ® - - - @ x141))
+ > m(F@sOTU (1@ @ x;11) ® -

Sk Ui+D=1+1
k>2

QTU L%y ® .- @ x41))) = 0. (55)

Itis the A -property of the morphismTu”“u =0,12,...).
In particular, we consider the cade= C*°(R"). In this case, we have that= j>. We
obtain the following as the equality in the cdse 1.

TUM (d(x1 ® x2)) — TU™ (x1 A x2) — ad() (TU* (x1 ® x2))
+ (TU (x1) @ TU®® (x2)) = 0. (56)

It implies that the compatibility of the products in the cohomology level.

4, TheRKYV conjecture
4.1. The convolution product and its deformations

There is the convolution structure on the space of distributi®iig) from the structure
of vector space, i.e.,

g1 D'(g) x D'(g) - D'(9), u kg V(@) = p1(u) X p3(v)(mgy(9)).

We denote the projectionx g — g to theith component by;. We denote the summation
(8. h) = g+ h bymo. We putD'(g)[[7]] := D'(g) ® C[[1]].
We construct two deformations of the product structure as follows:

1. Thefirstis the standard deformation by the structure of Lie grougd/Letg be a neigh-
borhood of 0 such that the map éxp U — U’ = exp(U) C G is a diffeomorphism.
We denote the space of vector fields on thelsdly X (U). We have the two inclusions
of theg into theX(U): any X € g gives the vector fiel&K with the constant coefficients,
i.e., Xf(x) = (d/dt) f (x + tX). On the other hand, any € g induces the left invariant
vector fieldX on G, which gives the vector fieléexp,)~1X on U.

We putX;(x) = (expk)—lff(tx) € X(U) foranyt € [0, 1]. Obviously, it holds that
Xo = X and thatX; = exp:l)?. We have the relationX,, Y;] = ¢[X, Y];,.
1.1. We obtain the pseudo-product struct(¥eY) — m, (X, Y): we can take an open
setV c U foranyt € [0, 1], there is the analytic map; : V x V — U given by
the following:

mq(X,Y) = Exp(X;) o Exp(¥;)(0) = (EXp(X;)) exp(Y),
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where ExgX;) is the map obtained by the vector fietd. Obviously, it holds that
mo(X,Y) = X + Y and thatn1(X, Y) = exp L(exp(X)exp(Y)). Thus we obtain
the family to connect the summation of the Lie algebra and the multiplication of
the Lie group.

1.2. For anyr < [0, 1], we obtain the deformatio®s, : D'(K1, V) x D'(K2, V) —
D'(K1 + K>, V) of the convolution product

u V(@) = p1(u) X p5(v)(m[(9)).

Thexg is the convolution fog and thex; is the convolution foiG.
For anyu € D'(K1,V),v € D'(K2, V) and a test functiosp, we have the
Cce°-function (u x; v) (¢) of the variable. We have the (not necessarily convergent)
Taylor series at = 0 of the (u *; v)(¢) which we denote by " 0, (¢). The O,
is a differential operator with at moskth order of analytic coefficients. Thus the
%, induces the formal deformation which we denote alse by
2. The second deformation is essentially due to Kontsevich:
2.1. Letx € g* ® g* ® g be the canonical tensor which gives the bracket of Lie algebra.
We put

Us () = Z u @A~ Aa) € Symg") ® Symg*) ® Sym(g).

n>0

Here we regard the variableas a formal parameter.

A n
Theld, (@ A --- A« ) is the differential operator with at most-rder of poly-
nomial coefficients.
3. We obtain the formal deformation with the formal parameter of the convolution
productD’()[[¢]] ® D' (@[]l — D"(@I[]]:

urv(@) = py(u) X p3(v) U ()mg(9)).

Due to the definition, tha+v(¢) is the formal power seriel_ P,(¢)t". The P, are
differential operators with at mosigh order of analytic coefficients.

4.2. Proof of the conjecture
Kontsevich obtained the formal power serjgs, j2.; € C[g*][[¢]] (See [10]) of the form
Jit = exp (ZCZIk)IZkTI’((ad(x)Zk))
k>1

Proposition 4.1. We consider the following ma@(o)[[]], *;) — (Dy(@)[7]], #), u —
J2.:u. The two formal deformations of product structures are equivalent under the morphism

Proof. We denote the Taylor series with respect to the variablfehe p; (jzu) X p3(jzv)
Um§(¢) (resp.pi(u) B psmf(j24)) by 3 Pu(@)t" (resp.y_ Qn(4)t"). Also, we denote
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the Taylor series with respect to the variabté the p3 (j2) p5 (j2)Um{ (@) (respam; (j2¢))
by 3 P.(¢)t" and " Q,(#)t". To compare theP, (¢) and theQ,(¢), we only have to
compare theP, (¢) and theQ,,(¢). Note that theP, (¢) and theQ,,(¢) are defined for any
smooth function which are not necessarily test functions.

Lemma4.1. For any analytic function f, we have the equality(f) = Q,.(f).

Proof. The restriction of the, to the space of distributions with 0-support is the product of
the enveloping algebra of the deformed Lie algebra with the bragkef], = ¢[ X, Y]. On
the other hand, the restriction of thas the product constructed by Kontsevich (see Section
1). Thus the formal power serias-v for the variable converges for any distributian, v
with O-support, and we know that-v = u *; v in this case. Since the supportsuiondv
are{0}, u x; v(f) anduxv(f) are defined for any analytic function, and they coincide, i.e.,
uxv(f) = urv(f). ltimplies the equalitiep} (1) X p5 (v) P, (f) = pf )X p5 ) 0n(f).
Thus all of the Taylor coefficients of the, (f) and theQ, (f) coincide. If f is analytic,
then theP (f) and theQ(f) are analytic. Thus we are done. O

Lemma4.2. For any test functiorp and distributions:, v € D'(U), it holds that

i) B ps(Yrv)(Pa(9) = pi(u) B ps(Yrv)(0n(9)).

Proof. Forany analytic functiorf defined ori/, the function,, () — P, (f) is constantly 0
due to the previous lemma. We can take a sequence of analytic fungtiwhgch converges
to ¢ on U with respect to angV -norm|| - levy, N=1,2,....

The sequenc®,,(f;) — P,(f;) converges ta, (¢) — P,(¢). Thus we are done. [

Thus we can conclude th#&, (¢) = 0, (¢) for any test functionp, which implies the
claim of the proposition.

Next we consider the following mag
@' @I *0) > @' @I, %), u > juu.

Proposition 4.2. The restriction of the morphism to the relative invariant part preserves
the product structure

Proof. We have constructed the morphigit’-* in the previous section
(Symg ® g*) ® Symg — Symg[[¢]], = Symg® Symg ® g* — Symg[7]],

There are g[[ t]]-valued polynomial functiory onthegx g and arR[[ ]]-valued polynomial
functiong on theg x g, so that for any elememt® 8 € Sym(g) ® g* andv € Sym(g), the
TU (u ® B ® v) is of the form

TU N (u ® B) ® v) = (f(B)piu K phv + gpiu K p3pv)m}.
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The TU* (1 ® (v ® B)) has a similar form. Thus the morphisfi/®! can be naturally
extended as the morphism

(D'(9) @ g%) @ D'(g9) — D'(9), D'(g) ® (D'(g) ® g*) — D'(g).
The calculation in the previous section shows that it holds that
Jalu g v) — jr(w)s ji(v) = £TU*Had) (1) ® v) £ TU* (@d@) (v) @ u).

Note that the Leibniz rule; (u g v) = e (u) *g v +u x4 (¢]'v) holds for the linear function
e’ ontheg, i.e., the element of thg*, which assures that the formalism of the proof of the
Formality theorem works in this case.

Let {¢;} be a basis of thg and {ej} be a dual basis of thg*. The tensorx can be

written asa = Zai’j‘ej‘ ® e}’f ® ex. Then the vector field ad) on theg can be written as
Zai’j(eje;‘f ad(ex), whereX; = e (X). We have the following easy lemma.

Lemma4.3. It holds that
Zai]j‘(ek(S) *g (€ju) ® ef = De,u ® e + Xou,

wheres is the delta function whose supportis the origiggdnd o denotes the infinitesimal
character ofyo.

Proof. It follows from the following direct calculation:
Zailj‘X,' (exd) *g (e;fu) = ai‘inu + ai’J-‘Xie;‘fek xu = 8x0(X)u + Dxu. O

The formula in the previous section shows that the products og-theariant parts (i.e.,
Oth cohomology groups) are compatible under the morpHfighh = j1-. Hence the map
Y1(g) Preserves the product structure.

Therefore the isomorphism of the formal deformations

@I *) — @I (@), %0), ur+> ji - jo-u

preserves the product structures, i.e., forany Z(K1, g), v € Z(K>, g) all of the Taylor
series with respect to the variablef theu xo v(¢) and thej1 j, *(j; *jau) *: (jg -j2v)(¢)
coincide for any test functios.

We have the (not formal) deformationsy andm, for anyt € [0, 1] because of the
construction. The formal power seri¢1§1 - jo aboutr and on thgy is also convergent.

We take a cut functior of U. Let W be a relative compact open subset ofthevhich
contains the origin 0. Ley be a function on thé/ such that)(x) = 1 on theW and the
support of the)r is a compact set of th&. The germ of ther and they u are same. For any
analytic functionf, (yu) *o (¥ v)(f) and j1jy (g Ljavu) % (i j2vv)(f) are defined
due to the cut function and analytic with respect to the variabldus the coincidence of
the Taylor series gives the equalityu) xo (¥ v)(f) = jujy *(g T j2¥w) % (g Lj2¥o)(f)
for any analytic functiory and for anyt € [0, 1]. For any test functiog on U, we can take
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a sequence of analytic functiorfswhich converges t¢ on any compact sk contained
in U with respect to ang'V-norm || - lev .y, N=1,2,.... Thus we can conclude that

(W) %0 (Y)(@) = juijy *Giy Hizvw) ¢ (g j2rv) (9)
for any test functior and for anyr € [0, 1].
Thus the two product structures on the spaces of germs of distribfjng), <o) and
the (D, (g), *1) are compatible under the morphism of the multiplica’tj@,mjzf,l.
Kontsevich showed that the function obtained by the substitutierl to the j; tl Jo.r is
j?. Hence we are done.

5. The BGRT conjecture

First we give the outline of the proof. We introduce the two Lie algebras which act on the
B. They are the natural counterparts of ffb@y(Rd ) and thero|y(Rd ). We can translate
the theory in the previous sections to this situation. Hence we have the following:

1. We can deform the algeb(8, mg). We denote the resulting algebra &y, +).
2. We obtain the algebra homomorphism of tie m ) to the (1, +).

3. We construct the natural algebra homomorphism of then 4) to the(B, »).
4. There is the PBW isomorphism from tleo the A.

Then we obtain the algebra homomorphism of tBem 4) to the(B, mg). The combina-
torics of the construction is the same as that of Kontsevich [10], and hence the resulting
morphism is Duflo—Kirillov morphism.

5.1. Two differential graded Lie algebras
We introduce the following two definitions.

Definition 5.1. We call the set of univalent vertices of Chinese charaEtday legs of I
and denote the set of legs by LEY.

Definition 5.2. An m-Chinese graph is a Chinese character with the decomposition
Leg(I") = Ly U ﬁlL,-(r).
1=

We denote the set at-Chinese graph by C& We put CG = [],,CG,,. We put CQ, :=
spanCG,,) and call it the group of the:-Chinese operators. We put C& 11,,CO,, and
call it the groups of Chinese operators. The gradation of CO is given &-£00,,, 1.

There is the morphism of the group CO to the differential graded Lie algebf =
@®Hom(®™ 1B, B), whose image DCO is the differential graded Lie subalgebra; i.e., to a
Chinese grapl®, we associate the elemeit e Hom(@" 1B, B). (30 ® - - @ ym) is
the sum of the Chinese diagrams which is obtained by connecting the legs in {f{@leg
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and the legs of along injective morphisms Le¢®) — Leg(yx) fork =1,...,m. The
vector space DCO has the gradation induced from that oG- ti%.

Proposition 5.1. The DCO is a differential graded Lie subalgebra of théB).

Proof. It is obvious because the composition of any elemé@nts®, € DCO belongs to
the DCO. 0

Definition 5.3. A specialn-Chinese grapli is anm-Chinese graph such that#= 1. We
denote the unique elementbf(I") by e; (I") ore;. We denote the set of specialChinese
graphs by the SCf. We put SCQ, := spanSCG,,) which we call the group of special
m-Chinese operators.

We have the morphism of the group SC@ the group HomA” 1B, B), i.e., the
composition of the following morphisms:

SCO— CO—> Hom (®m+18, B) — Hom(A"+1B, B).

We denote the image by TCQand we put TCG= TCO™.

We define the following operation on the TCO. For two eleménts TCO' and
n € TCO, the element o n € TCO'*™ is defined as follows: we consider the sum
of the special Chinese graplgswhich is obtained by connecting the edgé€é) to an
edge in theLgy(n), which we denote by e; 5, where the numbering of is given as
follows:

ep(O) =ep§) (p=<i-1, ep(Q) =epr1(§)) (=p=<k-1,

ep(§) = epi(n) (k=< p).

We putéen := Zfzo(—l)"“go,- . The following lemma is shown by the same formalism
as that in Section 2.2.

Lemma5.1. It holds that[€, 7] = £e ) — (—1)Kp e &.

Using this lemma, we obtain the following proposition easily.
Proposition 5.2. The TCO is a differential graded Lie subalgebra of #}i€}3).
5.2. Parallel construction dff!

We construct the. .-morphismi{ of the TCO[1] to DCO[1]. Letl" be an/-admissible
graph of type(n, m,u) andyz, ..., y, ben elements of TCO[1] such thay,| = #St
(p) —2.

For any vertex of the first type inl", we denote by $t) the set of the edges starting at
and denote by &t) the set of the edges ending afAny bijection’; : St(i) — {eo, ..., e}
and any injectiony; : St(i) — Ly (y;) determine the Chinese operator: for any edge j,
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I; gives the leg of; andJ; gives the leg of; if j is of the first type. By connecting them
for each edges, we obtain the Chinese graph which we dendtébyJ;, {y,}). Then we
obtain the following Chinese operator:

Ur(n® @y = Y T'Ui, Jj, v
i, Jj)

Also, we obtain the following Chinese operator:

UNn® - @y)=Y Y Wr-Ur(n®: - ®y).
m reG!

n.m

Theorem 5.1. Theld = (U,,) gives theL ,,-morphism
Proof. The same formalism of the proof of Formality theorem is available. O
Theorem 5.2. The compatibility of cup products in the cohomology level holds

Proof. The same formalism of the proof in the casBoly(R?), Dpoy(RY) is
available. 0

5.3. Proof of BGRT conjecture

We consider the special Chinese graplwhich we callhito.

1 head

left leg 1 right leg 2

The numbering of edges is as in the picture
Ly(A) = {head, L1(A) = {leftleg}, Lo(A) = {rightleg}.

Because of the IHX-relation, the is a solution of Maurer—Cartan equation for the differ-
ential graded Lie algebra TCO. We put as follows:

X =Zn—1!1/l,?(k~-~k).

Then theX gives the Maurer—Cartan solution for the differential graded Lie algebra DCO.
It gives the deformation of the structure of associative algebras, which we denote by
(B, %).

The tangent maf@, U/ : (B, mp) — (B, %) is given. It preserves the product structure
in the cohomology level by Theorem 5.2. Moreover, the differential of T20) , , which
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is given by thetad(\), vanishes as is checked easily. Hence, we conclude that the map
T,U : (B,mp) — (B, «) preserve the product structure.

We can construct the algebra homomorphism of(them 4) to the(, +) as follows.

We use the terminology ‘Chinese character diagrams’ for the diagrams which satisfies
all conditions of Chinese character diagram but replaced circles by the directed lines (see
[4, Section 3]). They are called ‘linear diagrams’ there.

We first construct the algebra homomorphism of the ¢pa) to the (5, +). Take a
Chinese character diagraim Consider the trivalent vertices &f which is on the directed
line of I". We give them the numbering which is increasing along the orientation of the

ST

The group spafCCD) has the gradation spa@CD) = spafCCD)™ by the number of
the trivial vertices on the directed line.

We construct the Chinese operatdrg? inductively. We puti @ = X. We puti™ =
1m=D oy X, and 1@, XD are the empty graphs.

Any m-Chinese graph naturally gives the map4fo B, i.e., removing the directed line,
and either:

—

e combining legd.; to the vertex if #L; = 1,
e doing nothing ifL; = @,
o Oif#L; > 2.

Thus the Chinese operataf™ gives the morphisnig g from spafCCD)"™ to B.

Proposition 5.3. The morphisniyg gives the algebra homomorphism frepar(CCD) to
(B, %).

Proof. It follows from the associativity ofi. Note that(X op X)X, X = X¢+m) O
Proposition 5.4. The morphisniayg gives the morphism from to (3, ).
Proof. The associativity ot implies thati ™ = 1=D o, X.

We only have to prove that STU relations are preserved. The summandsvbich

contribute non-trivially are only empty-graph and We can check directly the descent of
the morphism by calculation, see the following picture: O
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i i+1 1 1+1 i

1 ><><+;2§)—Y

Hence we obtain the algebra morphism, m 1) — (B, +). On the other hand, we
have the PBW morphisn® — A. Composing the morphisms, we obtain the algebra
homomorphism of thé3, m 4) to (B, mp).

Since the combinatorics of the construction is the same as that of Kontsevich [10], the
obtained morphism is the Duflo—Kirillov morphism.

Hence we are done.

For further reading see [6-8,11].
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